1887

Abstract

Two Gram-stain-negative, catalase- and oxidase-positive, non-spore-forming, aerobic, motile, flagellated, and coccus-shaped strains (Z23 and Z24) were isolated from faeces of Tibetan antelopes () on the Qinghai–Tibet Plateau, PR China. Results of the morphological, biochemical, and phylogenetic studies indicated that they were similar to each other, but distinct from existing species of the genus . The proposed type strain, Z23, had 97.8, 97.1 and 96.8 % 16S rRNA similarity to DSM 14915, JCM 31878 and KACC 16529. Results from further phylogenetic analyses based on the 16S rRNA gene and 857 core genes indicated that the two strains were members of , but clearly separated from the currently recognized species. Strains Z23 had 43.8 %, 25.0 % DNA–DNA relatedness and 91.2, 81.3 % ANI values with DSM 14915 and KACC 16529. The genomic DNA G+C content of strain Z23 was 68.6 mol%. The major cellular fatty acids of strain Z23 were Cω7 and/or Cω6 and Ccyclo 8. The cell-wall sugars included glucose, rhamnose and ribose. Q-10 was the sole respiratory quinone, and spermidine was the major polyamine component. Polar lipids present in strain Z23 were phosphatidylcholine, diphosphatidylglycerol, phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol, three aminolipids, two phospholipids and two unidentified lipids. Based on the distinct differences from other species judged from the genotypic and phenotypic data, a novel species represented by Z23 and Z24, sp. nov., is proposed. The type strain is Z23 (=CGMCC 1.16540=DSM 106207).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003479
2019-10-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/10/2979.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003479&mimeType=html&fmt=ahah

References

  1. Rihs JD, Brenner DJ, Weaver RE, Steigerwalt AG, Hollis DG et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 1993; 31:3275–3283[PubMed]
    [Google Scholar]
  2. Lee JH, Kim MS, Baik KS, Kim HM, Lee KH et al. Roseomonas wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2015; 65:4049–4054 [View Article][PubMed]
    [Google Scholar]
  3. Sánchez-Porro C, Gallego V, Busse HJ, Kämpfer P, Ventosa A. Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas . Int J Syst Evol Microbiol 2009; 59:1193–1198 [View Article][PubMed]
    [Google Scholar]
  4. Yoon JH, Kang SJ, Oh HW, Oh TK. Roseomonas terrae sp. nov. Int J Syst Evol Microbiol 2007; 57:2485–2488 [View Article][PubMed]
    [Google Scholar]
  5. Zhang YQ, Yu LY, Wang D, Liu HY, Sun CH et al. Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 2008; 58:2070–2074 [View Article][PubMed]
    [Google Scholar]
  6. Chen Q, Sun LN, Zhang XX, He J, Kwon SW et al. Roseomonas rhizosphaerae sp. nov., a triazophos-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 2014; 64:1127–1133 [View Article][PubMed]
    [Google Scholar]
  7. Kim DU, Ka JO, Jo K. Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2014; 64:1024–1029 [View Article][PubMed]
    [Google Scholar]
  8. Yoo SH, Weon HY, Noh HJ, Hong SB, Lee CM et al. Roseomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:1482–1485 [View Article][PubMed]
    [Google Scholar]
  9. Kim SJ, Weon HY, Ahn JH, Hong SB, Seok SJ et al. Roseomonas aerophila sp. nov., isolated from air. Int J Syst Evol Microbiol 2013; 63:2334–2337 [View Article][PubMed]
    [Google Scholar]
  10. Lee Y, Jeon CO. Roseomonas aeriglobus sp. nov., isolated from an air-conditioning system. Antonie van Leeuwenhoek 2018; 111:343–351 [View Article][PubMed]
    [Google Scholar]
  11. Wang C, Deng S, Liu X, Yao L, Shi C et al. Roseomonas eburnea sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2016; 66:385–390 [View Article][PubMed]
    [Google Scholar]
  12. Furuhata K, Miyamoto H, Goto K, Kato Y, Hara M et al. Roseomonas stagni sp. nov., isolated from pond water in Japan. J Gen Appl Microbiol 2008; 54:167–171 [View Article][PubMed]
    [Google Scholar]
  13. Baik KS, Park SC, Choe HN, Kim SN, Moon JH et al. Roseomonas riguiloci sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2012; 62:3024–3029 [View Article][PubMed]
    [Google Scholar]
  14. Han XY, Pham AS, Tarrand JJ, Rolston KV, Helsel LO et al. Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp. nov., and Roseomonas gilardii subsp rosea subsp nov. Am J Clin Pathol 2003; 120:256–264 [View Article][PubMed]
    [Google Scholar]
  15. Bai X, Lu S, Yang J, Jin D, Pu J et al. Precise Fecal Microbiome of the Herbivorous Tibetan Antelope Inhabiting High-Altitude Alpine Plateau. Front Microbiol 2018; 9:2321 [View Article][PubMed]
    [Google Scholar]
  16. Jin D, Chen C, Li L, Lu S, Li Z et al. Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis . BMC Microbiol 2013; 13:141 [View Article][PubMed]
    [Google Scholar]
  17. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp. 125–175
    [Google Scholar]
  18. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics 2002; Chapter 2:Unit 2.3 [View Article][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  22. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article][PubMed]
    [Google Scholar]
  23. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article][PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  25. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  28. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article][PubMed]
    [Google Scholar]
  29. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016; 44:W54–W57 [View Article][PubMed]
    [Google Scholar]
  30. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  31. De Ley J. Reexamination of the association between melting point, buoyant density and chemical base composition of deoxyribonucleic acid. J Bacteriol 1970; 101:738–754[PubMed]
    [Google Scholar]
  32. Wayne LG. International committee on systematic bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol Hyg A 1988; 268:433–434[PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  35. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article][PubMed]
    [Google Scholar]
  36. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed]
    [Google Scholar]
  37. Austrian R. The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev 1960; 24:261–265[PubMed]
    [Google Scholar]
  38. Xu Y, Xu X, Lan R, Xiong Y, Ye C et al. An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS One 2013; 8:e64211 [View Article][PubMed]
    [Google Scholar]
  39. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  40. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes . In Dietz TDW. (editor) Actinomycete Taxonomy. Special Publication no. 6 Arlington, VA: Society for Industrial Microbiology; 1980 pp. 227–291
    [Google Scholar]
  41. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria . J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  42. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  43. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
  44. Hyeon JW, Jeon CO. Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner. Int J Syst Evol Microbiol 2017; 67:4039–4044 [View Article][PubMed]
    [Google Scholar]
  45. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  46. Póntigo F, Moraga M, Flores SV. Molecular phylogeny and a taxonomic proposal for the genus Streptococcus . Genet Mol Res 2015; 14:10905–10918 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003479
Loading
/content/journal/ijsem/10.1099/ijsem.0.003479
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error