1887

Abstract

The Arabian Gulf surrounding Qatar is distinct from other marine ecosystems due to its high salinity (35–75 PSU) and extreme water temperature fluctuations (11–40 °C). Furthermore, in the last decade, Qatar has been witnessing an industrial boom as well as extensive infrastructure construction activities. Marine micro-organisms, including fungi, remain largely unexplored in the Arabian Gulf. During a 3 year study, we investigated the diversity of marine fungi in coastal waters around Qatar. As a result, two new species were isolated from the Qatari marine environment. Molecular and phylogenetic analyses of rRNA gene sequences of five loci, namely the internal transcribed spacer 1 and 2 regions and the D1/D2 domains of the large subunit rRNA, actin, RNA polymerase second largest subunit and beta-tubulin genes, were used to confirm the identity of the novel species for which we propose the names sp. nov. and sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003482
2019-10-01
2024-03-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/10/2992.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003482&mimeType=html&fmt=ahah

References

  1. Crous PW, Braun U, Schubert K, Groenewald JZ. Delimiting Cladosporium from morphologically similar genera. Stud Mycol 2007; 58:33–56 [View Article][PubMed]
    [Google Scholar]
  2. Crous PW, Wingfield MJ, Groenewald JZ. Niche sharing reflects a poorly understood biodiversity phenomenon. Persoonia 2009; 22:83–94 [View Article][PubMed]
    [Google Scholar]
  3. Crous PW, Roets F. Toxicocladosporium protearum. Crous & Roets, sp. nov. Persoonia 2010; 25:134–135
    [Google Scholar]
  4. Crous PW, Shivas RG. Toxicocladosporium banksiae Crous, R.G. Shivas &McTaggart sp. nov. Persoonia (Fungal Planet). Persoonia 2010; 25:146–147
    [Google Scholar]
  5. Crous PW, Summerell BA, Shivas RG, Romberg M, Mel'nik VA et al. Fungal planet description sheets: 92-106. Persoonia 2011; 27:130–162 [View Article][PubMed]
    [Google Scholar]
  6. Crous PW, Summerell BA, Swart L, Denman S, Taylor JE et al. Fungal pathogens of Proteaceae. Persoonia 2011; 27:20–45 [View Article][PubMed]
    [Google Scholar]
  7. Crous PW, Shivas RG, Wingfield MJ, Summerell BA, Rossman AY et al. Fungal planet description sheets: 128-153. Persoonia 2012; 29:146–201 [View Article][PubMed]
    [Google Scholar]
  8. Crous PW, Wingfield MJ, Guarro J, Cheewangkoon R, Van der Bank M et al. Fungal planet description sheets: 154-213. Persoonia 2013; 31:188–296 [View Article][PubMed]
    [Google Scholar]
  9. Crous PW, Shivas RG, Quaedvlieg W, Van der Bank M, Zhang Y et al. Fungal planet description sheets: 214-280. Persoonia 2014; 32:184–306 [View Article][PubMed]
    [Google Scholar]
  10. Crous PW, Groenewald JZ. Why everlastings don't last. Persoonia 2011; 26:70–84 [View Article][PubMed]
    [Google Scholar]
  11. Cruywagen EM, Crous PW, Roux J, Slippers B, Wingfield MJ. Fungi associated with black mould on baobab trees in southern Africa. Antonie van Leeuwenhoek 2015; 108:85–95 [View Article][PubMed]
    [Google Scholar]
  12. Bezerra JDP, Sandoval-Denis M, Paiva LM, Silva GA, Groenewald JZ et al. New endophytic Toxicocladosporium species from cacti in Brazil, and description of Neocladosporium gen. nov. IMA Fungus 2017; 8:77–97 [View Article][PubMed]
    [Google Scholar]
  13. Crous PW, Summerell BA, Shivas RG, Burgess TI, Decock CA et al. Fungal Planet description sheets: 107-127. Persoonia 2012; 28:138–182 [View Article][PubMed]
    [Google Scholar]
  14. Cho KH, Kim DC, Yoon CS, Ko WM, Lee SJ et al. Anti-neuroinflammatory effects of citreohybridonol involving TLR4-MyD88-mediated inhibition of NF-кB and MAPK signaling pathways in lipopolysaccharide-stimulated BV2 cells. Neurochem Int 2016; 95:55–62 [View Article][PubMed]
    [Google Scholar]
  15. Satoh K, Yamazaki T, Nakayama T, Umeda Y, Alshahni MM et al. Characterization of fungi isolated from the equipment used in the International Space Station or Space Shuttle. Microbiol Immunol 2016; 60:295–302 [View Article][PubMed]
    [Google Scholar]
  16. Nhạ PV, Giang HTT, Vượng PT, Thanh DT, Tuyết TT et al. Giám định một số chủng nấm ký sinh rệp sáp hại cà phê bằng phương pháp DNA. [Identification of some fungal strains parasitic on coffee scale insect by DNA]. Tạp chí Khoa học và Phát triển 2011; 5:713–718
    [Google Scholar]
  17. McCarthy CB, Diambra LA, Rivera Pomar RV. Metagenomic analysis of taxa associated with Lutzomyia longipalpis, vector of visceral leishmaniasis, using an unbiased high-throughput approach. PLoS Negl Trop Dis 2011; 5:e1304 [View Article][PubMed]
    [Google Scholar]
  18. Crous PW, Wingfield MJ, Richardson DM, Le Roux JJ, Strasberg D et al. Fungal planet description sheets: 400-468. Persoonia 2016; 36:316–458 [View Article][PubMed]
    [Google Scholar]
  19. Zhang E, Tanaka T, Tajima M, Tsuboi R, Nishikawa A et al. Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiol Immunol 2011; 55:625–632 [View Article][PubMed]
    [Google Scholar]
  20. Sandoval-Denis M, Sutton DA, Martin-Vicente A, Cano-Lira JF, Wiederhold N et al. Cladosporium species recovered from clinical samples in the United States. J Clin Microbiol 2015; 53:2990–3000 [View Article][PubMed]
    [Google Scholar]
  21. Fotedar R, Kolecka A, Boekhout T, Fell JW, Malki AA et al. Fungal diversity of the hypersaline Inland Sea in Qatar. Bot Mar 2018; 60:595–610
    [Google Scholar]
  22. Sandoval-Denis M, Gené J, Sutton DA, Wiederhold NP, Cano-Lira JF et al. New species of Cladosporium associated with human and animal infections. Persoonia 2016; 36:281–298 [View Article][PubMed]
    [Google Scholar]
  23. Crous PW, Verkley GJM, Groenewald JZ, Houbrakene J. Westerdijk laboratory manual series 1: fungal biodiversity 2019. Utrecht, the Netherlands: Westerdijk Fungal Biodiversity Institute; 2019
  24. Groenewald JZ, Nakashima C, Nishikawa J, Shin HD, Park JH et al. Species concepts in Cercospora: spotting the weeds among the roses. Stud Mycol 2013; 75:115–170 [View Article][PubMed]
    [Google Scholar]
  25. Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia 2015; 35:242–263 [View Article][PubMed]
    [Google Scholar]
  26. White TJ, Bruns T, Lee J, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, White TJ, Sninsky JJ, Gelfand DH. (editors) Pcr Protocols: a Guide to Methods and Applications San Diego: Academic Press; 1990 pp. 315–322
    [Google Scholar]
  27. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990; 172:4238–4246 [View Article][PubMed]
    [Google Scholar]
  28. Rehner SA, Samuels GJ. Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 1994; 98:625–634 [View Article]
    [Google Scholar]
  29. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia 1999; 91:553–556 [View Article]
    [Google Scholar]
  30. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995; 61:1323–1330[PubMed]
    [Google Scholar]
  31. Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 1999; 16:1799–1808 [View Article][PubMed]
    [Google Scholar]
  32. Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 2007; 44:1204–1223 [View Article][PubMed]
    [Google Scholar]
  33. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  34. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003; 19:1572–1574 [View Article][PubMed]
    [Google Scholar]
  35. Swofford DL. PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4.0 beta. Sunderland, MA: Sinauer Associates; 2003
    [Google Scholar]
  36. Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the extreme to the campus and beyond, Association for Computing Machinery Chicago, USA: 2012 pp. 1–8
    [Google Scholar]
  37. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9:772 [View Article][PubMed]
    [Google Scholar]
  38. Mason-Gamer RJ, Kellogg EA. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst Biol 1996; 45:524–545 [View Article]
    [Google Scholar]
  39. Wiens JJ. Testing phylogenetic methods with tree congruence: phylogenetic analysis of polymorphic morphological characters in phrynosomatid lizards. Syst Biol 1998; 47:427–444 [View Article]
    [Google Scholar]
  40. Richer RA. Conservation in Qatar: impact of increasing industrialization. Center for International and regional studies. QNRS Repository 2011; 1:130
    [Google Scholar]
  41. Sheppard C, Al-Husiani M, Al-Jamali F, Al-Yamani F, Baldwin R et al. The Gulf: a young sea in decline. Mar Pollut Bull 2010; 60:13–38 [View Article][PubMed]
    [Google Scholar]
  42. Fotedar R, Kolecka A, Boekhout T, Fell JW, Zeyara A et al. Kondoa qatarensis f.a., sp. nov., a novel yeast species isolated from marine water in Qatar. Int J Syst Evol Microbiol 2019; 69:486–492 [View Article][PubMed]
    [Google Scholar]
  43. Fotedar R, Fell JW, Boekhout T, Kolecka A, Zeyara A et al. Cystobasidium halotolerans sp. nov., a novel basidiomycetous yeast species isolated from the Arabian Gulf. Int J Syst Evol Microbiol 2019; 69:839–845 [View Article][PubMed]
    [Google Scholar]
  44. Fotedar R, Kolecka A, Boekhout T, Fell JW, Anand A et al. Naganishia qatarensis sp. nov., a novel basidiomycetous yeast species from a hypersaline marine environment in Qatar. Int J Syst Evol Microbiol 2018; 68:2924–2929 [View Article][PubMed]
    [Google Scholar]
  45. Boekhout T, Fotedar R, Kolecka A, Fell J, Zeyara A et al. Fungal diversity in the Arabian gulf surrounding qatar: new species of yeasts and molds. Qatar Foundation Annual Research Conference Proceedings 2016
    [Google Scholar]
  46. Vieira G, Purić J, Morão LG, dos Santos JA, Inforsato FJ et al. Terrestrial and marine Antarctic fungi extracts active against Xanthomonas citri subsp. citri . Lett Appl Microbiol 2018; 67:64–71 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003482
Loading
/content/journal/ijsem/10.1099/ijsem.0.003482
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error