1887

Abstract

A Gram-stain-positive, strictly aerobic, motile and rod-shaped bacterium, designated strain LJ137, was isolated from the sediment of Taihu Lake in China. A polyphasic approach was used to investigate its taxonomic position. Strain LJ137 grew optimally at pH 7.5, at 37 °C and with 2.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain LJ137 was most closely related to the genera and . The closest phylogenetic neighbours were KCTC 13822, LCB256 and KCTC 13823, with 95.2, 96.5 and 95.6 % 16S rRNA gene sequence similarity, respectively. The peptidoglycan amino acid type was A4 (-Lys–-Asp). The major respiratory quinone was menaquinone-7 (MK-7). The polar lipids of strain LJ137 contained diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids, two aminophospholipids and one unidentified lipid. The G+C content of the genomic DNA was 40.4 mol%. The dominant cellular fatty acids were anteiso-C, anteiso-C and iso-C. Based on the phenotypic, chemotaxonomic, phylogenetic and genome sequence characteristics of this strain, a novel species, sp. nov., is proposed. The type strain is LJ137 (=CGMCC 1.13678=NBRC 113552). An emended description of the genus is presented.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003500
2019-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/9/2632.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003500&mimeType=html&fmt=ahah

References

  1. Mayr R, Busse HJ, Worliczek HL, Ehling-Schulz M, Scherer S. Ornithinibacillus gen. nov., with the species Ornithinibacillus bavariensis sp. nov. and Ornithinibacillus californiensis sp. nov. Int J Syst Evol Microbiol 2006; 56:1383–1389 [View Article][PubMed]
    [Google Scholar]
  2. Kämpfer P, Falsen E, Lodders N, Langer S, Busse HJ et al. Ornithinibacillus contaminans sp. nov., an endospore-forming species. Int J Syst Evol Microbiol 2010; 60:2930–2934 [View Article][PubMed]
    [Google Scholar]
  3. Shin NR, Whon TW, Kim MS, Roh SW, Jung MJ et al. Ornithinibacillus scapharcae sp. nov., isolated from a dead ark clam. Antonie van Leeuwenhoek 2012; 101:147–154 [View Article][PubMed]
    [Google Scholar]
  4. Bagheri M, Amoozegar MA, Schumann P, Didari M, Mehrshad M et al. Ornithinibacillus halophilus sp. nov., a moderately halophilic, gram-stain-positive, endospore-forming bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:844–848 [View Article][PubMed]
    [Google Scholar]
  5. Wu C, Chang M, Yang G, Zhou S, Zhuang L. Ornithinibacillus heyuanensis sp. nov., isolated from South China. Antonie van Leeuwenhoek 2014; 106:235–241 [View Article][PubMed]
    [Google Scholar]
  6. Lu Q, Yang G, Ma C, Qin D, Li D et al. Ornithinibacillus halotolerans sp. nov., isolated from a saline soil. Int J Syst Evol Microbiol 2014; 64:1685–1689 [View Article][PubMed]
    [Google Scholar]
  7. Lu Q, Yuan H, Li J, Zhao Y, Zhou S. Ornithinibacillus composti sp. nov., isolated from sludge compost and emended description of the genus Ornithinibacillus. Antonie van Leeuwenhoek 2015; 107:813–819 [View Article][PubMed]
    [Google Scholar]
  8. Gan L, Zhang H, Long X, Tian J, Wang Z et al. Ornithinibacillus salinisoli sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil. Int J Syst Evol Microbiol 2018; 68:769–775 [View Article][PubMed]
    [Google Scholar]
  9. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77:194 [View Article][PubMed]
    [Google Scholar]
  10. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  11. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative Rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  12. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496 [View Article][PubMed]
    [Google Scholar]
  13. Moreno C, Romero J, Espejo RT. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology 2002; 148:1233–1239 [View Article][PubMed]
    [Google Scholar]
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  18. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article][PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Pospiech A, Neumann B. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 1995; 11:217–218 [View Article][PubMed]
    [Google Scholar]
  23. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  25. Massouras A, Hens K, Gubelmann C, Uplekar S, Decouttere F et al. Primer-initiated sequence synthesis to detect and assemble structural variants. Nat Methods 2010; 7:485–486 [View Article][PubMed]
    [Google Scholar]
  26. Stoesser G, Baker W, van den Broek AE, Camon E, Hingamp P et al. The EMBL nucleotide sequence database. nucleic acids res 2000;28:19-23. Updated article in this issue. Nucleic Acids Res 2001; 29:17–21
    [Google Scholar]
  27. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  28. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Method Microbiol 1985; 18:123–156
    [Google Scholar]
  29. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  30. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  31. Tsubouchi T, Shimane Y, Usui K, Shimamura S, Mori K et al. Brevundimonas abyssalis sp. nov., a dimorphic prosthecate bacterium isolated from deep-subsea floor sediment. Int J Syst Evol Microbiol 2013; 63:1987–1994 [View Article][PubMed]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  33. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc 1990
    [Google Scholar]
  34. Bagheri M, Amoozegar MA, Schumann P, Didari M, Mehrshad M et al. Ornithinibacillus halophilus sp. nov., a moderately halophilic, Gram-stain-positive, endospore-forming bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2013; 63:844–848 [View Article][PubMed]
    [Google Scholar]
  35. Amoozegar MA, Bagheri M, Didari M, Mehrshad M, Schumann P et al. Aquibacillus halophilus gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Virgibacillus koreensis as Aquibacillus koreensis comb. nov. and Virgibacillus albus as Aquibacillus albus comb. nov. Int J Syst Evol Microbiol 2014; 64:3616–3623 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003500
Loading
/content/journal/ijsem/10.1099/ijsem.0.003500
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error