1887

Abstract

A nitrite-tolerant denitrifying bacterium, strain GL14, was isolated from the nitrification/denitrification bioreactor in our laboratory. Strain GL14 was Gram-stain-negative, rod-shaped, non-spore-forming, facultatively anaerobic and motile by means of a single polar flagellum. Phylogenetic analyses based on 16S rRNA gene sequences indicated that it was assigned to the genus with highest 16S rRNA gene sequence similarity (98.77 %) to DSM 18231 and NEAU-ST5-5, followed by ATCC 17588 (98.42 %), HL22-2 (98.29 %) and NEAU-ST5-21 (98.22 %). Phylogenetic analysis based on both concatenated sequences of the 16S rRNA gene and two housekeeping genes ( and ) and genome sequences further clarified the intrageneric phylogenetic position of strain GL14. The DNA G+C content of GL14 was 63.1 mol%. The results of digital DNA–DNA hybridization (highest 24.2 % of DNA–DNA relatedness) based on the Genome-to-Genome Distance Calculator and average nucleotide identity analyses (highest 80.23 %) confirmed that the strain was distinctly delineated from known species of the genus . The major fatty acids were summed feature 8 (C 7/C 6), C, summed feature 3 (C 7/C 6), Ccyclo and C. The respiratory quinone was ubiquinone Q-9. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on the phylogenetic, genomic, phenotypic and chemotaxonomic analyses, it was concluded that strain GL14 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GL14 (=CGMCC 1.13874=NBRC 113853).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003516
2019-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/8/2471.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003516&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1:235–238
    [Google Scholar]
  2. Palleroni NJ. Pseudomonas. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 New York: Springer; 2005 pp. 323–379
    [Google Scholar]
  3. Silby MW, Winstanley C, Godfrey SA, Levy SB, Jackson RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 2011; 35:652–680 [View Article][PubMed]
    [Google Scholar]
  4. Ramasamy D, Mishra AK, Lagier JC, Padhmanabhan R, Rossi M et al. A polyphasic strategy incorporating genomic data for the taxonomic description of novel bacterial species. Int J Syst Evol Microbiol 2014; 64:384–391 [View Article][PubMed]
    [Google Scholar]
  5. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas . Front Microbiol 2015; 6:214 [View Article][PubMed]
    [Google Scholar]
  6. Timilsina S, Minsavage GV, Preston J, Newberry EA, Paret ML et al. Pseudomonas floridensis sp. nov., a bacterial pathogen isolated from tomato. Int J Syst Evol Microbiol 2018; 68:64–70 [View Article][PubMed]
    [Google Scholar]
  7. Qin J, Hu Y, Feng Y, Xaioju L, Zong Z. Pseudomonas sichuanensis sp. nov., isolated from hospital sewage. Int J Syst Evol Microbiol 2019; 69:517–522 [View Article][PubMed]
    [Google Scholar]
  8. Frasson D, Opoku M, Picozzi T, Torossi T, Balada S et al. Pseudomonas wadenswilerensis sp. nov. and Pseudomonas reidholzensis sp. nov., two novel species within the Pseudomonas putida group isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:2853–2861 [View Article][PubMed]
    [Google Scholar]
  9. Liu Y, Ai GM, Miao LL, Liu ZP. Marinobacter strain NNA5, a newly isolated and highly efficient aerobic denitrifier with zero N2O emission. Bioresour Technol 2016; 206:9–15 [View Article][PubMed]
    [Google Scholar]
  10. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  11. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  14. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  19. Romanenko LA, Uchino M, Falsen E, Lysenko AM, Zhukova NV et al. Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. J Gen Appl Microbiol 2005; 51:65–71 [View Article][PubMed]
    [Google Scholar]
  20. Zhang L, Pan Y, Wang K, Zhang X, Zhang S et al. Pseudomonas songnenensis sp. nov., isolated from saline and alkaline soils in Songnen Plain, China. Antonie van Leeuwenhoek 2015; 107:711–721 [View Article][PubMed]
    [Google Scholar]
  21. Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. Biology of Pseudomonas stutzeri . Microbiol Mol Biol Rev 2006; 70:510–547 [View Article][PubMed]
    [Google Scholar]
  22. Xie F, Ma H, Quan S, Liu D, Chen G et al. Pseudomonas kunmingensis sp. nov., an exopolysaccharide-producing bacterium isolated from a phosphate mine. Int J Syst Evol Microbiol 2014; 64:559–564 [View Article][PubMed]
    [Google Scholar]
  23. Zhang L, Pan Y, Wang K, Zhang X, Zhang C et al. Pseudomonas zhaodongensis sp. nov., isolated from saline and alkaline soils. Int J Syst Evol Microbiol 2015; 65:1022–1030 [View Article][PubMed]
    [Google Scholar]
  24. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000; 146:2385–2394 [View Article][PubMed]
    [Google Scholar]
  25. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article][PubMed]
    [Google Scholar]
  26. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18–23 [View Article][PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–73 [View Article][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  31. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  32. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  33. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001 (English translation)
    [Google Scholar]
  34. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  35. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  36. Joo HS, Hirai M, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. J Biosci Bioeng 2005; 100:184–191 [View Article][PubMed]
    [Google Scholar]
  37. Zhong ZP, Liu Y, Hou TT, Liu HC, Zhou YG et al. Pseudomonas salina sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol 2015; 65:2846–2851 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003516
Loading
/content/journal/ijsem/10.1099/ijsem.0.003516
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error