1887

Abstract

The taxonomic position of an actinobacterium isolated from a desert soil sample collected from Badain Jaran Desert, designated as CPCC 204711, was established using a polyphasic approach. Cells of the isolate were Gram-staining-positive, aerobic, non-motile cocci. Good growth was observed at 28 °C (range 20–40 °C), pH 7.0 (range pH 6.0–8.0) and 0–1 % NaCl concentration (range 0–5 %, w/v). Galactose, arabinose and ribose were detected as the sugar compositions in the whole cell hydrolysates. The peptidoglycan type was A3gamma (-Dpm-Gly). MK-9(H) was detected as the predominant menaquinone, and diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, several unidentified glycolipids, and one unidentified amino-glycolipid were detected as the major polar lipids. The predominant fatty acid was -C. The genomic DNA G+C content was 73.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CPCC 204711 affiliated to the family , in which the strain formed a distinct phylogenetic lineage next to the genus with the highest 16S rRNA gene sequence similarity of 96.0 % to YIM 2617. Both phylogenetic analysis and phenotypic characteristics supported that strain CPCC 204711 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed, with CPCC 204711 (=KCTC 39977=DSM 105431) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003519
2019-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/8/2486.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003519&mimeType=html&fmt=ahah

References

  1. Ciaramella M, Cannio R, Moracci M, Pisani FM, Rossi M. Molecular biology of extremophiles. World J Microbiol Biotechnol 1995; 11:71–84 [View Article][PubMed]
    [Google Scholar]
  2. Sun JQ, Xu L, Guo Y, Li WL, Shao ZQ et al. Kribbella deserti sp. nov., isolated from rhizosphere soil of Ammopiptanthus mongolicus . Int J Syst Evol Microbiol 2017; 67:692–696 [View Article][PubMed]
    [Google Scholar]
  3. Lee DW, Lee SD. Allocatelliglobosispora scoriae gen. nov., sp. nov., isolated from volcanic ash. Int J Syst Evol Microbiol 2011; 61:264–270 [View Article][PubMed]
    [Google Scholar]
  4. Lee SD. Conexibacter stalactiti sp. nov., isolated from stalactites in a lava cave and emended description of the genus Conexibacter . Int J Syst Evol Microbiol 2017; 67:3214–3218 [View Article][PubMed]
    [Google Scholar]
  5. Schumann P, Prauser H, Rainey FA, Stackebrandt E, Hirsch P. Friedmanniella antarctica gen. nov., sp. nov., an LL-diaminopimelic acid-containing actinomycete from Antarctic sandstone . Int J Syst Bacteriol 1997; 47:278–283 [View Article][PubMed]
    [Google Scholar]
  6. Delwiche EA, Family XI. Propionibacteriaceae fam. nov. Bergey’s Manual of Determinative Bacteriology 1957; 7:569
    [Google Scholar]
  7. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  8. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009; 59:589–608 [View Article][PubMed]
    [Google Scholar]
  9. Scholz CF, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 2016; 66:4422–4432 [View Article][PubMed]
    [Google Scholar]
  10. Mekadim C, Killer J, Pechar R, Mrázek J. Variable regions of the glyS, infB and rplB genes usable as novel genetic markers for identification and phylogenetic purposes of genera belonging to the family Propionibacteriaceae . Int J Syst Evol Microbiol 2018; 68:2697–2705 [View Article][PubMed]
    [Google Scholar]
  11. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9: [View Article][PubMed]
    [Google Scholar]
  12. Ai MJ, Sun Y, Sun HM, Liu HY, Yu LY et al. Allobranchiibius huperziae gen. nov., sp. nov., a member of Dermacoccaceae isolated from the root of a medicinal plant Huperzia serrata (Thunb.). Int J Syst Evol Microbiol 2017; 67:4210–4215 [View Article][PubMed]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  14. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  15. Yuan LJ, Zhang YQ, Guan Y, Wei YZ, Li QP et al. Saccharopolyspora antimicrobica sp. nov., an actinomycete from soil. Int J Syst Evol Microbiol 2008; 58:1180–1185 [View Article][PubMed]
    [Google Scholar]
  16. Lechevalier H, Lechevalier MP. Classification des actinomycetes aerobes basée sur leur morphologie et leur composition chimique. Ann Inst Pasteur 1965; 108:662–673 (in French)
    [Google Scholar]
  17. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy (SIM Special Publication no. 6) Fairfax, VA: Society for Industrial Microbiology; 1980 pp. 227–291
    [Google Scholar]
  18. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  19. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  21. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology) Technical Series vol. 20 Manhattan, NY: Academic Press; 1985 pp. 173–199
    [Google Scholar]
  22. Meier A, Kirschner P, Schröder KH, Wolters J, Kroppenstedt RM et al. Mycobacterium intermedium sp. nov. Int J Syst Bacteriol 1993; 43:204–209 [View Article][PubMed]
    [Google Scholar]
  23. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0. Molecular Biology and Evolution. Mol Biol Evol 2016; 33:1870–1874
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  27. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  30. Zhang DF, Wang HF, Xiong ZJ, Tian XP, Liu L et al. Mariniluteicoccus flavus gen. nov., sp. nov., a new member of the family Propionibacteriaceae, isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:1051–1056 [View Article][PubMed]
    [Google Scholar]
  31. Liu BB, Chen W, Chu X, Yang Y, Salam N et al. Mariniluteicoccus endophyticus sp. nov., an endophytic actinobacterium isolated from root of Ocimum basilicum . Int J Syst Evol Microbiol 2016; 66:1306–1310 [View Article][PubMed]
    [Google Scholar]
  32. Yokota A, Tamura T, Takeuchi M, Weiss N, Stackebrandt E. Transfer of Propionibacterium innocuum Pitcher and Collins 1991 to Propioniferax gen. nov. as Propioniferax innocua comb. nov. Int J Syst Bacteriol 1994; 44:579–582 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003519
Loading
/content/journal/ijsem/10.1099/ijsem.0.003519
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error