1887

Abstract

A bacterial strain, designated 39S1MB, isolated from a root nodule of a soybean plant that had been inoculated with root-zone soil of (hog peanut) growing in Canada, was previously characterized and placed in a novel lineage within the genus . The taxonomic status of strain 39S1MB was verified by genomic and phenotypic analyses. Phylogenetic analyses of individual and concatenated protein-encoding gene sequences (, , , and ) placed 39S1MB in a lineage distinct from named species. Data for sequence similarities of concatenated genes relative to type strains of named species supported the phylogenetic data. Average nucleotide identity values of genome sequences (84.5–91.7 %) were well below the threshold value for bacterial species circumscription. Based on these data, OO99 and ERR11 are close relatives of 39S1MB. The complete genome of 39S1MB consists of a single 7.04 Mbp chromosome without a symbiosis island; G+C content is 64.7 mol%. Present in the genome are key photosystem and nitrogen-fixation genes, but not nodulation and type III secretion system genes. Sequence analysis of the nitrogen fixation gene, , placed 39S1MB in a novel lineage distinct from named species. Data for phenotypic tests including growth characteristics and carbon source utilization supported the sequence-based analyses. Based on the data presented here, a novel species with the name sp. nov. is proposed with 39S1MB (=LMG 29934=HAMBI 3680) as the type strain.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003569
2019-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/9/2841.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003569&mimeType=html&fmt=ahah

References

  1. Bromfield ESP, Cloutier S, Tambong JT, Tran Thi TV. Soybeans inoculated with root zone soils of Canadian native legumes harbour diverse and novel Bradyrhizobium spp. that possess agricultural potential. Syst Appl Microbiol 2017; 40:440–447 [View Article][PubMed]
    [Google Scholar]
  2. Tang J, Bromfield ES, Rodrigue N, Cloutier S, Tambong JT. Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2012; 2:2943–2961 [View Article][PubMed]
    [Google Scholar]
  3. Yu X, Cloutier S, Tambong JT, Bromfield ES. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 2014; 64:3202–3207 [View Article][PubMed]
    [Google Scholar]
  4. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 2012; 9:772 [View Article][PubMed]
    [Google Scholar]
  5. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 2004; 20:407–415 [View Article][PubMed]
    [Google Scholar]
  6. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 2010; 59:307–321 [View Article][PubMed]
    [Google Scholar]
  7. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  9. Rivas R, Martens M, de Lajudie P, Willems A. Multilocus sequence analysis of the genus Bradyrhizobium . Syst Appl Microbiol 2009; 32:101–110 [View Article][PubMed]
    [Google Scholar]
  10. Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J et al. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 2014; 64:2072–2078 [View Article][PubMed]
    [Google Scholar]
  11. Parker MA. The spread of Bradyrhizobium lineages across host legume clades: from Abarema to Zygia . Microb Ecol 2015; 69:630–640 [View Article][PubMed]
    [Google Scholar]
  12. Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 2000; 28:1102–1104 [View Article][PubMed]
    [Google Scholar]
  13. Ardui S, Ameur A, Vermeesch JR, Hestand MS. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics. Nucleic Acids Res 2018; 46:2159–2168 [View Article][PubMed]
    [Google Scholar]
  14. Nguyen HDT, Cloutier S, Bromfield ESP. Complete genome sequence of Bradyrhizobium ottawaense OO99T, an efficientnitrogen-fixing symbiont of soybean. Microbiol Resour Announc 2018; 7:e0147718 [View Article][PubMed]
    [Google Scholar]
  15. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K et al. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int J Syst Evol Microbiol 2018; 68:2386–2392 [View Article][PubMed]
    [Google Scholar]
  16. de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and agrobacteria Minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363–3368 [View Article][PubMed]
    [Google Scholar]
  17. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  19. Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11T and Bradyrhizobium yuanmingense CCBAU 10071T . Stand Genomic Sci 2017; 12:74 [View Article][PubMed]
    [Google Scholar]
  20. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  21. Haft DH, Dicuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  22. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 2017; 45:D535–D542 [View Article][PubMed]
    [Google Scholar]
  23. Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 2017; 45:W30–W35 [View Article][PubMed]
    [Google Scholar]
  24. Perret X, Staehelin C, Broughton WJ. Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 2000; 64:180–201 [View Article][PubMed]
    [Google Scholar]
  25. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E et al. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 2007; 316:1307–1312 [View Article][PubMed]
    [Google Scholar]
  26. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris . Nat Biotechnol 2004; 22:55–61 [View Article][PubMed]
    [Google Scholar]
  27. Okubo T, Tsukui T, Maita H, Okamoto S, Oshima K et al. Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs. Microbes Environ 2012; 27:306–315 [View Article][PubMed]
    [Google Scholar]
  28. Giraud E, Hannibal L, Fardoux J, Verméglio A, Dreyfus B. Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva . Proc Natl Acad Sci USA 2000; 97:14795–14800 [View Article][PubMed]
    [Google Scholar]
  29. Buck JD. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993[PubMed]
    [Google Scholar]
  30. Garrity GM, Bell JA, Lilburn T. Family VII. Bradyrhizobiaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed. vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005 pp. 438
    [Google Scholar]
  31. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 2000; 50:787–801 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003569
Loading
/content/journal/ijsem/10.1099/ijsem.0.003569
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error