1887

Abstract

A novel Gram-negative, obligate aerobic, rod-shaped, motile by one or two polar flagella, non-spore-forming bacterial strain, WCHPs060044, was isolated from the wastewater treatment plant at West China Hospital in Chengdu, PR China. Analysis of its 16S rRNA gene sequence showed that strain WCHPs060044 belonged to the genus with the highest similarity to KL28 (99.73 %), HYS (99.52 %) and CCOS 846 (99.38 %). Phylogenomic analysis based on 107 core gene sequences demonstrated that WCHPs060044 was a member of the group but was distant from all closely related species. Whole-genome comparisons, using average nucleotide identity based on (ANIb) and DNA–DNA hybridization (isDDH), confirmed low genome relatedness to its close phylogenetic neighbours [below the recommended thresholds of 95 % (ANIb) and 70 % (isDDH) for species delineation]. Phenotypic characterization tests showed that the utilization of -arginine, -fucose, -galacturonic, -glucuronic acid, inositol and sorbitol in combination could distinguish this strain from other related species of the genus . Therefore, based on genetic and phenotypic evidence, strain WCHPs060044 represents a novel species, for which the name sp. nov. is proposed. The type strain is WCHPs060044 (GDMCC 1.1396=JCM 32907=CCTCC AB 2018120=CNCTC 7663).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003622
2019-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/10/3281.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003622&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1:235–238
    [Google Scholar]
  2. Palleroni NJ. Introduction to the family pseudomonadaceae. In Stolp H, Trüper HG, Balows A, Starr MP, Schlegel HG et al. (editors) The Prokaryotes Berlin Heidelberg: Springer; 1981 pp. 655–665
    [Google Scholar]
  3. Anwar N, Abaydulla G, Zayadan B, Abdurahman M, Hamood B et al. Pseudomonas populi sp. nov., an endophytic bacterium isolated from Populus euphratica . Int J Syst Evol Microbiol 2016; 66:1419–1425 [View Article][PubMed]
    [Google Scholar]
  4. Iglewski B. Chapter 27 pseudomonas. In Baron S. (editor) Medical Microbiology, 4th ed. . Galveston: University of Texas Medical Branch at Galveston; 1996
    [Google Scholar]
  5. Yonezuka K, Shimodaira J, Tabata M, Ohji S, Hosoyama A et al. Phylogenetic analysis reveals the taxonomically diverse distribution of the Pseudomonas putida group. J Gen Appl Microbiol 2017; 63:1–10 [View Article][PubMed]
    [Google Scholar]
  6. Stanier RY, Palleroni NJ, Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 1966; 43:159–271 [View Article][PubMed]
    [Google Scholar]
  7. Palleroni NJ. Pseudomonas. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed . vol. 2 New York: Springer; 2005 pp. 323–379
    [Google Scholar]
  8. Willems A, Falsen E, Pot B, Jantzen E, Hoste B et al. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov. Acidovorax delafieldii comb. nov. and Acidovorax temperans sp. nov. Int J Syst Bacteriol 1990; 40:384–398 [View Article][PubMed]
    [Google Scholar]
  9. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 1992; 36:1251–1275 [View Article][PubMed]
    [Google Scholar]
  10. Brown GR, Sutcliffe IC, Cummings SP. Reclassification of [Pseudomonas] doudoroffii (Baumann et al. 1983) into the genus Oceanomonas gen. nov. as Oceanomonas doudoroffii comb. nov. and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. Int J Syst Evol Microbiol 2001; 51:67–72 [View Article][PubMed]
    [Google Scholar]
  11. Peix A, Ramírez-Bahena MH, Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas . Infect Genet Evol 2009; 9:1132–1147 [View Article][PubMed]
    [Google Scholar]
  12. Tamaoka J, Ha D-M, Komagata K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an Emended Description of the Genus Comamonas. Int J Syst Bacteriol 1987; 37:52–59 [View Article]
    [Google Scholar]
  13. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article][PubMed]
    [Google Scholar]
  14. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J et al. Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas . Syst Appl Microbiol 2012; 35:455–464 [View Article][PubMed]
    [Google Scholar]
  15. Zou Y, He S, Sun Y, Zhang X, Liu Y et al. Pseudomonas urumqiensis sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia. Int J Syst Evol Microbiol 2019; 69:1760–1766 [View Article][PubMed]
    [Google Scholar]
  16. Tohya M, Watanabe S, Teramoto K, Uechi K, Tada T et al. Pseudomonas asiatica sp. nov., isolated from hospitalized patients in Japan and Myanmar. Int J Syst Evol Microbiol 2019; 69:1361–1368 [View Article][PubMed]
    [Google Scholar]
  17. Kämpfer P. The characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:7 [View Article][PubMed]
    [Google Scholar]
  18. Moore ER, Mihaylova SA, Vandamme P, Krichevsky MI, Dijkshoorn L. Microbial systematics and taxonomy: relevance for a microbial commons. Res Microbiol 2010; 161:430–438 [View Article][PubMed]
    [Google Scholar]
  19. Lane DJ. 16S/23S rRNA Sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematic New York: John Wiley and Sons; 1991 pp. 115–175
    [Google Scholar]
  20. Hu Y, Feng Y, Zhang X, Zong Z. Acinetobacter defluvii sp. nov., recovered from hospital sewage. Int J Syst Evol Microbiol 2017; 67:1709–1713 [View Article][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  22. Chojnacki S, Cowley A, Lee J, Foix A, Lopez R. Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res 2017; 45:W550–W553 [View Article][PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  24. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  26. Poppel MT, Skiebe E, Laue M, Bergmann H, Ebersberger I et al. Acinetobacter equi sp. nov., isolated from horse faeces. Int J Syst Evol Microbiol 2016; 66:881–888 [View Article]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  29. Qin J, Maixnerová M, Nemec M, Feng Y, Zhang X et al. Acinetobacter cumulans sp. nov., isolated from hospital sewage and capable of acquisition of multiple antibiotic resistance genes. Syst Appl Microbiol 2019; 42:319–325 [View Article][PubMed]
    [Google Scholar]
  30. Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. Isme J 2012; 6:1186–1199 [View Article][PubMed]
    [Google Scholar]
  31. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  34. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  35. Wayne LG. International committee on systematic bacteriology: Announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene Series A: Medical Microbiology, Infectious Diseases, Virology . Parasitology 1988; 268:433–434
    [Google Scholar]
  36. Cowan PI. and Steel's Manual for the Identification of Medical Bacteria. J Clin Pathol 1993; 46:975
    [Google Scholar]
  37. Pandey KK, Mayilraj S, Chakrabarti T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 2002; 52:1559–1567
    [Google Scholar]
  38. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 1990; 101:1–7
    [Google Scholar]
  39. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  40. Moore ERB, Tindall BJ, Martins Dos Santos VAP, Pieper DH, Ramos JL et al. Nonmedical: Pseudomonas.. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes: Volume 6: Proteobacteria: Gamma Subclass New York: NY: Springer New York; 2006 pp. 646–703
    [Google Scholar]
  41. Saati-Santamaría Z, López-Mondéjar R, Jiménez-Gómez A, Díez-Méndez A, Větrovský T et al. Discovery of Phloeophagus beetles as a source of Pseudomonas strains that produce potentially new bioactive substances and description of Pseudomonas bohemica sp. nov. Front Microbiol 2018; 9:913 [View Article][PubMed]
    [Google Scholar]
  42. Gao J, Yu X, Xie Z. Draft genome sequence of high-siderophore-yielding Pseudomonas sp. strain HYS. J Bacteriol 2012; 194:4121 [View Article][PubMed]
    [Google Scholar]
  43. Mulet M, Gomila M, Lemaitre B, Lalucat J, García-Valdés E. Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst Appl Microbiol 2012; 35:145–149 [View Article]
    [Google Scholar]
  44. Furmanczyk EM, Kaminski MA, Lipinski L, Dziembowski A, Sobczak A. Pseudomonas laurylsulfatovorans sp. nov., sodium dodecyl sulfate degrading bacteria, isolated from the peaty soil of a wastewater treatment plant. Syst Appl Microbiol 2018; 41:348–354 [View Article][PubMed]
    [Google Scholar]
  45. Ohji S, Yamazoe A, Hosoyama A, Tsuchikane K, Ezaki T et al. The Complete Genome Sequence of Pseudomonas putida NBRC 14164T Confirms High Intraspecies Variation. Genome Announc 2014; 2: [View Article][PubMed]
    [Google Scholar]
  46. Wang MQ, Wang Z, Yu LN, Zhang CS, Bi J et al. Pseudomonas qingdaonensis sp. nov., an aflatoxin-degrading bacterium, isolated from peanut rhizospheric soil. Arch Microbiol 2019; 201:673–678 [View Article][PubMed]
    [Google Scholar]
  47. Qin J, Hu Y, Feng Y, Xaioju L, Zong Z. Pseudomonas sichuanensis sp. nov., isolated from hospital sewage. Int J Syst Evol Microbiol 2019; 69:517–522 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003622
Loading
/content/journal/ijsem/10.1099/ijsem.0.003622
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error