1887

Abstract

To search for enhancers and/or inhibitors of viral haemorrhagic septicaemia virus (VHSV, a salmonid rhabdovirus) infectivity, a total of 51 peptides from a pepscan of viral envelope protein G, a recombinant peptide from protein G (frg11) and 80 peptide mixtures from an α-helix-favoured combinatorial library were screened. However, contrary to what occurs in many other enveloped viruses, only peptides enhancing rather than inhibiting VHSV infectivity were found. Because some of the enhancer pepscan G peptides and frg11 were derived from phospholipid-binding or fusion-related regions identified previously, it was suggested that enhancement of virus infectivity might be related to virus–cell fusion. Furthermore, enhancement was significant only when the viral peptides were pre-incubated with VHSV at the optimal low pH of fusion, before being adjusted to physiological pH and assayed for infectivity. Enhancement of VHSV infectivity caused by the pre-incubation of VHSV with peptide p5 (SAAEASAKATAEATAKG), one of the individual enhancer peptides defined from the screening of the combinatorial library, was independent of the pre-incubation pH. However, it was also related to fusion because the binding of p5 to protein G induced VHSV to bypass the endosome pathway of infection and reduced the low-pH threshold of fusion, thus suggesting an alternative virus entry pathway for p5–VHSV complexes. Further investigations into VHSV enhancer peptides might shed some light on the mechanisms of VHSV fusion.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-11-2671
2002-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/11/0832671a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-11-2671&mimeType=html&fmt=ahah

References

  1. Basurco B., Coll J. M. 1989; Spanish isolates and reference strains of viral haemorrhagic septicaemia virus show similar protein size patterns. Bulletin of the European Association of Fish Pathologists 9:92–95
    [Google Scholar]
  2. Bearzotti M., Monnier A. F., Vende P., Grosclaude J., de Kinkelin P., Benmansour A. 1995; The glycoprotein of viral hemorrhagic septicemia virus (VHSV): antigenicity and role in virulence. Veterinary Research 26:413–422
    [Google Scholar]
  3. Bentz J. 2000; Membrane fusion mediated by coiled coils: a hypothesis. Biophysical Journal 78:886–900
    [Google Scholar]
  4. Chan D. C., Fass D., Berger J. M., Kim P. S. 1997; Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273
    [Google Scholar]
  5. Chen T. T., Lu J. K., Shamblott M. J., Cheng C. M., Lin C. M., Burns J. C., Reimschuessel R., Chatakondi N., Dunham R. A. 1995; Transgenic fish: ideal models for basic research and biotechnological applications. Zoological Studies 34:215–234
    [Google Scholar]
  6. Coll J. M. 1995; Heptad-repeat sequences in the glycoprotein of rhabdoviruses. Virus Genes 10:107–114
    [Google Scholar]
  7. Coll J. M. 1999; Early steps in rhabdoviral infection. Recent Research Developments in Virology 1:75–83
    [Google Scholar]
  8. Durrer P., Gaudin Y., Ruigrok R. W. H., Graf R., Brunner J. 1995; Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. Journal of Biological Chemistry 270:17575–17581
    [Google Scholar]
  9. Einer-Jensen K., Krogh T. N., Roepstorff P., Lorenzen N. 1998; Characterization of intramolecular disulphide bonds and secondary modifications of the glycoprotein from viral hemorrhagic septicemia virus, a fish rhabdovirus. Journal of Virology 72:10189–10196
    [Google Scholar]
  10. Estepa A., Coll J. M. 1996; Pepscan mapping and fusion-related properties of the major phosphatidylserine-binding domain of the glycoprotein of viral hemorrhagic septicemia virus, a salmonid rhabdovirus. Virology 216:60–70
    [Google Scholar]
  11. Estepa A., Coll J. M. 1997; Temperature and pH requirements for viral haemorrhagic septicemia virus induced cell fusion. Diseases of Aquatic Organisms 28:185–189
    [Google Scholar]
  12. Estepa A. M., Rocha A. I., Mas V., Pérez L., Encinar J. A., Nuñez E., Fernandez A., Gonzalez Ros J. M., Gavilanes F., Coll J. M. 2001; A protein G fragment from the salmonid viral hemorrhagic septicemia rhabdovirus induces cell-to-cell fusion and membrane phosphatidylserine translocation at low pH. Journal of Biological Chemistry 276:46268–46275
    [Google Scholar]
  13. Esteve V., Blondelle S., Celda B., Perez-Paya E. 2001; Stabilization of an α-helical conformation in an isolated hexapeptide inhibitor of calmodulin. Biopolymers 59:467–476
    [Google Scholar]
  14. Fernandez-Alonso M., Lorenzo G., Perez L., Bullido R., Estepa A., Lorenzen N., Coll J. M. 1999; Mapping of the lineal antibody epitopes of the glycoprotein of VHSV, a salmonid rhabdovirus. Diseases of Aquatic Organisms 34:167–176
    [Google Scholar]
  15. Ferrer M., Kapoor T. M., Strassmaier T., Weissenhorn W., Skehel J. J., Oprian D., Schreiber S. L., Wiley D. C., Harrison S. C. 1999; Selection of gp41-mediated HIV-1 cell entry inhibitors from biased combinatorial libraries of non-natural binding elements. Nature 6:953–960
    [Google Scholar]
  16. Fredericksen B. L., Whitt M. A. 1996; Mutations at two conserved acidic amino acids in the glycoprotein of vesicular stomatitis virus affect pH-dependent conformational changes and reduce the pH threshold for membrane fusion. Virology 217:49–57
    [Google Scholar]
  17. Fredericksen B. L., Whitt M. A. 1998; Attenuation of recombinant vesicular stomatitis viruses encoding mutant glycoproteins demonstrates a critical role for maintaining a high pH threshold for membrane fusion in viral fitness. Virology 240:349–358
    [Google Scholar]
  18. Gaudin Y., de Kinkelin P., Benmansour A. 1999a; Mutations in the glycoprotein of viral haemorrhagic septicaemia virus that affect virulence for fish and the pH threshold for membrane fusion. Journal of General Virology 80:1221–1229
    [Google Scholar]
  19. Gaudin Y., Tuffereau C., Durrer P., Brunner J., Flamand A., Ruigrok R. 1999b; Rabies virus-induced membrane fusion. Molecular Membrane Biology 16:21–31
    [Google Scholar]
  20. Lambert D. M., Barney S., Lambert A. L., Guthrie K., Medinas R., Davis D. E., Bucy T., Erickson J., Merutka G., Petteway Petteway. S. Jr 1996; Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proceedings of the National Academy of Sciences, USA 93:2186–2191
    [Google Scholar]
  21. LeBerre M., De Kinkelin P., Metzger A. 1977; Identification sérologique des rhabdovirus des salmonidés. Bulletin Office International Epizooties 87:391–393
    [Google Scholar]
  22. Li Y., Drone C., Sat E., Ghosh H. P. 1993; Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. Journal of Virology 67:4070–4077
    [Google Scholar]
  23. Lorenzo G., Estepa A., Coll J. M. 1996; Fast neutralization/immunoperoxidase assay for viral haemorrhagic septicemia with anti-nucleoprotein monoclonal antibody. Journal of Virological Methods 58:1–6
    [Google Scholar]
  24. Muñoz V., Serrano L. 1997; Development of the multiple sequence approximation within the AGADIR model of α-helix formation comparison with Zimm–Bragg and Lifson–Roig formalisms. Biopolymers 41:495–509
    [Google Scholar]
  25. O’Neil K. T., DeGrado W. F. 1990; A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250:646–651
    [Google Scholar]
  26. Owens R. J., Tanner C. C., Mulligan M. J., Srinivas R. V., Compas R. W. 1990; Oligopeptide inhibitors of HIV-induced syncytium formation. AIDS Research and Human Retroviruses 6:1289–1296
    [Google Scholar]
  27. Pastor M. T., Lopez de la Paz M., Lacroix E., Serrano L., Perez-Paya E. 2002; Combinatorial approaches: a new tool to search for highly structured β-hairpin peptides. Proceedings of the National Academy of Sciences, USA 99:614–619
    [Google Scholar]
  28. Perez L., Estepa A., Coll J. M. 1998; Purification of the glycoprotein G from viral haemorrhagic septicaemia virus, a fish rhabdovirus, by lectin affinity chromatography. Journal of Virological Methods 76:1–8
    [Google Scholar]
  29. Perez L., Mas V., Coll J. M., Estepa A. 2002; Enhanced detection of viral haemorrhagic septicaemia virus (a salmonid rhabdovirus) by pretreatment of the virus with a combinatorial library-selected peptide. Journal of Virological Methods (in Press)
    [Google Scholar]
  30. Perez-Paya E., Houghten R. A., Blondelle S. E. 1996; Functionalized protein-like structures from conformationally defined synthetic combinatorial libraries. Journal of Biological Chemistry 271:4120–4126
    [Google Scholar]
  31. Puras Lutzke R. A., Eppens N. A., Weber P. A., Houghten R. A., Plasterk R. H. 1995; Identification of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a combinatorial chemical library. Proceedings of the National Academy of Sciences, USA 92:11456–11460
    [Google Scholar]
  32. Rapaport D., Ovadia M., Shai Y. 1995; A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus–cell fusion: an emerging similarity with functional domains of other viruses. EMBO Journal 14:5524–5531
    [Google Scholar]
  33. Richardson J. S., Richardson D. C. 1988; Amino acid preferences for specific locations at the ends of α helices. Science 240:1648–1652
    [Google Scholar]
  34. Rocha A., Fernandez-Alonso M., Mas V., Perez L., Estepa A., Coll J. M. 2002; Antibody response to a linear epitope of the protein G of a rhabdovirus in immunized trout. Veterinary Immunology and Immunopathology 86:89–99
    [Google Scholar]
  35. Sanz F. A., Coll J. M. 1992; Detection of hemorrhagic septicemia virus of salmonid fishes by use of an enzyme-linked immunosorbent assay containing high sodium chloride concentration and two noncompetitive monoclonal antibodies against early viral nucleoproteins. American Journal of Veterinary Research 53:897–903
    [Google Scholar]
  36. Shokralla S., He Y., Wanas E., Ghosh H. P. 1998; Mutations in a carboxy-terminal region of vesicular stomatitis virus glycoprotein G that affect membrane fusion activity. Virology 242:39–50
    [Google Scholar]
  37. Slepushkin V. A., Melikyan G. B., Sidorova M. V., Kornilaeva G. V., Chumakov V. M., Az′muko A. A., Andreev S. M., Kalmanson A. E., Kamarov E. V. 1990; Interaction of peptides corresponding to N-terminal fragments of influenza virus hemaglutinin light chain (HA2) and transmembrane glycoprotein (gp41) of human immunodeficiency virus (HIV-1) with artificial and natural lipid membranes. Biological Membranes 7:261–273
    [Google Scholar]
  38. Slepushkin V. A., Kornilaeva G. V., Andreev S. M., Sidorova M. V., Petrukhina A. O., Matsevich G. R., Raduk S. V., Grigoriev V. B., Makarova T. V., Lukashov V. V., Karamov E. V. 1993; Inhibition of human immunodeficiency virus type 1 (HIV-1) penetration into target cells by synthetic peptides mimicking the N-terminus of the HIV-1 transmembrane glycoprotein. Virology 194:294–301
    [Google Scholar]
  39. Suk W. A., Long C. W. 1983; Enhancement of endogenous xenotropic murine retrovirus expression by tuftsin. Annals of the New York Academy of Sciences 419:75–86
    [Google Scholar]
  40. Thiry M., Lecoq-Xhonneux F., Dheur I., Renard A., de Kinkelin P. 1991; Sequence of a cDNA carrying the glycoprotein gene and part of the matrix protein M2 gene of viral haemorrhagic septicaemia virus, a fish rhabdovirus. Biochimica et Biophysica Acta 1090:345–347
    [Google Scholar]
  41. Voneche V., Callebaut I., Lambrech B., Brasseur R., Burny A., Portetelle D. 1993; Enhancement of bovine leukemia virus-induced syncytia formation by di- and tripeptides. Virology 192:307–311
    [Google Scholar]
  42. Walker P. J., Kongsuwan K. 1999; Deduced structural model for animal rhabdovirus glycoproteins. Journal of General Virology 80:1211–1220
    [Google Scholar]
  43. Wang B., Ke L. H., Jiang H., Li C. Z., Tien P. 2000; Selection of a specific peptide from a nona-peptide library for in vitro inhibition of grass carp hemorrhage virus replication. Virus Research 67:119–125
    [Google Scholar]
  44. Wild T. F., Buckland R. 1997; Inhibition of measles virus infection and fusion with peptides corresponding to the leucine zipper region of the fusion protein. Journal of General Virology 78:107–111
    [Google Scholar]
  45. Wild C., Oas T., McDanal C., Bolognesi D., Matthews T. 1992; A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proceedings of the National Academy of Sciences, USA 89:10537–10541
    [Google Scholar]
  46. Wild C., Greenwell T., Shugars D., Rimsky-Clarke L., Matthews T. 1995; The inhibitory activity of an HIV type 1 peptide correlates with its ability to interact with a leucine zipper structure. AIDS Research and Human Retroviruses 11:323–325
    [Google Scholar]
  47. Yao Q., Compans R. W. 1996; Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. Virology 223:103–112
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-11-2671
Loading
/content/journal/jgv/10.1099/0022-1317-83-11-2671
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error