1887

Abstract

The order includes three virus families that replicate in the cytoplasm: the , composed of two subfamilies, the and , the and the . These viruses, also called non-segmented negative-strand RNA viruses (NNV), contain five to ten tandemly linked genes, which are separated by conserved junctional sequences that act as mRNA start and poly(A)/stop sites. For the NNV, downstream mRNA synthesis depends on termination of the upstream mRNA, and all NNV RNA-dependent RNA polymerases reiteratively copy (‘stutter’ on) a short run of template uridylates during transcription to polyadenylate and terminate their mRNAs. The RNA-dependent RNA polymerase of a subset of the NNV, all members of the , also stutter in a very controlled fashion to edit their phosphoprotein gene mRNA, and Ebola virus, a filovirus, carries out a related process on its glycoprotein mRNA. Remarkably, all viruses that edit their phosphoprotein mRNA are also governed by the ‘rule of six’, i.e. their genomes must be of polyhexameric length (6n+0) to replicate efficiently. Why these two seemingly unrelated processes are so tightly linked in the has been an enigma. This paper will review what is presently known about these two processes that are unique to viruses of this subfamily, and will discuss whether this enigmatic linkage could be due to the phenomenon of RNA virus error catastrophe.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80986-0
2005-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/7/vir861869.html?itemId=/content/journal/jgv/10.1099/vir.0.80986-0&mimeType=html&fmt=ahah

References

  1. Bhella D., Ralph A., Yeo R. P. 2004; Conformational flexibility in recombinant measles virus nucleocapsids visualised by cryo-negative stain electron microscopy and real-space helical reconstruction. J Mol Biol 340:319–331 [CrossRef]
    [Google Scholar]
  2. Bushnell D. A., Westover K. D., Davis R. E., Kornberg R. D. 2004; Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4·5 Angstroms. Science 303:983–988 [CrossRef]
    [Google Scholar]
  3. Butcher S. J., Grimes J. M., Makeyev E. V., Bamford D. H., Stuart D. I. 2001; A mechanism for initiating RNA-dependent RNA polymerization. Nature 410:235–240 [CrossRef]
    [Google Scholar]
  4. Calain P., Roux L. 1993; The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67:4822–4830
    [Google Scholar]
  5. Chan C. L., Landick R. 1993; Dissection of the his leader pause site by base substitution reveals a multipartite signal that includes a pause RNA hairpin. J Mol Biol 233:25–42 [CrossRef]
    [Google Scholar]
  6. Chen Z., Green T. J., Luo M., Li H. 2004; Visualizing the RNA molecule in the bacterially expressed vesicular stomatitis virus nucleoprotein-RNA complex. Structure 12:227–235 [CrossRef]
    [Google Scholar]
  7. Collins P. L., Mink M. A., Stec D. S. 1991; Rescue of synthetic analogs of respiratory syncytial genomic RNA and effect of truncations and mutations on the expression of a foreign reporter gene. Proc Natl Acad Sci U S A 88:9663–9667 [CrossRef]
    [Google Scholar]
  8. Domingo E. 2000; Viruses at the edge of adaptation. Virology 270:251–253 [CrossRef]
    [Google Scholar]
  9. Drake J. W., Holland J. J. 1999; Mutation rates among RNA viruses. Proc Natl Acad Sci U S A 96:13910–13913 [CrossRef]
    [Google Scholar]
  10. Egelman E. H., Wu S.-S., Amrein M., Portner A., Murti G. 1989; The Sendai virus nucleocapsid exists in at least four different helical states. J Virol 63:2233–2243
    [Google Scholar]
  11. Eigen M. 2002; Error catastrophe and antiviral strategy. Proc Natl Acad Sci U S A 99:13374–13376 [CrossRef]
    [Google Scholar]
  12. Fearns R., Collins P. L., Peeples M. E. 2000; Functional analysis of the genomic and antigenomic promoters of human respiratory syncytial virus. J Virol 74:6006–6014 [CrossRef]
    [Google Scholar]
  13. Gnatt A. L., Cramer P., Fu J., Bushnell D. A., Kornberg R. D. 2001; Structural basis of transcription: an RNA polymerase II elongation complex at 3·3 Å resolution. Science 292:1876–1882 [CrossRef]
    [Google Scholar]
  14. Gonzalez-Lopez C., Arias A., Pariente N., Gomez-Mariano G., Domingo E. 2004; Preextinction viral RNA can interfere with infectivity. J Virol 78:3319–3324 [CrossRef]
    [Google Scholar]
  15. Graci J. D., Cameron C. E. 2002; Quasispecies, error catastrophe, and the antiviral activity of ribavirin. Virology 298:175–180 [CrossRef]
    [Google Scholar]
  16. Hansen J. L., Long A. M., Schultz S. C. 1997; Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122 [CrossRef]
    [Google Scholar]
  17. Hausmann S., Jacques J. P., Kolakofsky D. 1996; Paramyxovirus RNA editing and the requirement for hexamer genome length. RNA 2:1033–1045
    [Google Scholar]
  18. Hausmann S., Garcin D., Delenda C., Kolakofsky D. 1999; The versatility of paramyxovirus RNA polymerase stuttering. J Virol 73:5568–5576
    [Google Scholar]
  19. Hoffman M. A., Banerjee A. K. 2000; Precise mapping of the replication and transcription promoters of human parainfluenza virus type 3. Virology 269:201–211 [CrossRef]
    [Google Scholar]
  20. Hong Z., Cameron C. E., Walker M. P., Castro C., Yao N., Lau J. Y., Zhong W. 2001; A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase. Virology 285:6–11 [CrossRef]
    [Google Scholar]
  21. Iseni F., Barge A., Baudin F., Blondel D., Ruigrok R. W. 1998; Characterization of rabies virus nucleocapsids and recombinant nucleocapsid-like structures. J Gen Virol 79:2909–2919
    [Google Scholar]
  22. Iseni F., Baudin F., Blondel D., Ruigrok R. W. 2000; Structure of the RNA inside the vesicular stomatitis virus nucleocapsid. RNA 6:270–281 [CrossRef]
    [Google Scholar]
  23. Iseni F., Baudin F., Garcin D., Marq J. B., Ruigrok R. W., Kolakofsky D. 2002; Chemical modification of nucleotide bases and mRNA editing depend on hexamer or nucleoprotein phase in Sendai virus nucleocapsids. RNA 8:1056–1067 [CrossRef]
    [Google Scholar]
  24. Jacques J. P., Kolakofsky D. 1991; Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev 5:707–713 [CrossRef]
    [Google Scholar]
  25. Joyce C. M., Steitz T. A. 1995; Polymerase structures and function: variations on a theme?. J Bacteriol 177:6321–6329
    [Google Scholar]
  26. Kolakofsky D., Pelet T., Garcin D., Hausmann S., Curran J., Roux L. 1998; Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72:891–899
    [Google Scholar]
  27. Koonin E. V. 1991; The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72:2197–2206 [CrossRef]
    [Google Scholar]
  28. Lamb R. A., Kolakofsky D. 2001; Paramyxoviridae : the viruses and their replication. In Fields Virology , vol. 1 pp  1305–1340 Edited by Knipe D. M., Howley P. M. Lippincott: Williams & Wilkins;
    [Google Scholar]
  29. Laurila M. R., Makeyev E. V., Bamford D. H. 2002; Bacteriophage π 6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer. J Biol Chem 277:17117–17124 [CrossRef]
    [Google Scholar]
  30. Lynch S., Kolakofsky D. 1978; Ends of the RNA within Sendai virus defective interfering nucleocapsids are not free. J Virol 28:584–589
    [Google Scholar]
  31. Mountcastle W. E., Compans R. W., Lackland H., Choppin P. W. 1974; Proteolytic cleavage of subunits of the nucleocapsid of the paramyxovirus simian virus 5. J Virol 14:1253–1261
    [Google Scholar]
  32. Murphy S. K., Parks G. D. 1999; RNA replication for the paramyxovirus simian virus 5 requires an internal repeated (CGNNNN) sequence motif. J Virol 73:805–809
    [Google Scholar]
  33. Murphy S. K., Ito Y., Parks G. D. 1998; A functional antigenomic promoter for the paramyxovirus simian virus 5 requires proper spacing between an essential internal segment and the 3′ terminus. J Virol 72:10–19
    [Google Scholar]
  34. Ollis D. L., Brick P., Hamlin R., Xuong N. G., Steitz T. A. 1985; Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313:762–766 [CrossRef]
    [Google Scholar]
  35. Palangat M., Landick R. 2001; Roles of RNA: DNA hybrid stability, RNA structure, and active site conformation in pausing by human RNA polymerase II. J Mol Biol 311:265–282 [CrossRef]
    [Google Scholar]
  36. Palangat M., Meier T. I., Keene R. G., Landick R. 1998; Transcriptional pausing at +62 of the HIV-1 nascent RNA modulates formation of the TAR RNA structure. Mol Cell 1:1033–1042 [CrossRef]
    [Google Scholar]
  37. Pattnaik A. K., Ball L. A., LeGrone A. W., Wertz G. W. 1992; Infectious defective interfering particles of VSV from transcripts of a cDNA clone. Cell 69:1011–1020 [CrossRef]
    [Google Scholar]
  38. Pattnaik A. K., Ball L. A., LeGrone A., Wertz G. W. 1995; The termini of VSV DI particles are sufficient to signal RNA encapsidation, replication and budding to generate infectious particles. Virology 206:760–764 [CrossRef]
    [Google Scholar]
  39. Pelet T., Delenda C., Gubbay O., Garcin D., Kolakofsky D. 1996; Partial characterization of a Sendai virus replication promoter and the rule of six. Virology 224:405–414 [CrossRef]
    [Google Scholar]
  40. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874
    [Google Scholar]
  41. Sakaguchi S., Katamine S., Nishida N. 11 other authors 1996; Loss of cerebellar Purkinje cells in aged mice homozygous for a disrupted PrP gene. Nature 380:528–531 [CrossRef]
    [Google Scholar]
  42. Samal S. K., Collins P. L. 1996; RNA replication by a respiratory syncytial virus RNA analog does not obey the rule of six and retains a nonviral trinucleotide extension at the leader end. J Virol 70:5075–5082
    [Google Scholar]
  43. Sanchez A., Trappier S. G., Mahy B. W., Peters C. J., Nichol S. T. 1996; The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A 93:3602–3607 [CrossRef]
    [Google Scholar]
  44. Schoehn G., Iseni F., Mavrakis M., Blondel D., Ruigrok R. W. 2001; Structure of recombinant rabies virus nucleoprotein-RNA complex and identification of the phosphoprotein binding site. J Virol 75:490–498 [CrossRef]
    [Google Scholar]
  45. Schoehn G., Mavrakis M., Albertini A., Wade R., Hoenger A., Ruigrok R. W. 2004; The 12 A structure of trypsin-treated measles virus N-RNA. J Mol Biol 339:301–312 [CrossRef]
    [Google Scholar]
  46. Schrag S. J., Rota P. A., Bellini W. J. 1999; Spontaneous mutation rate of measles virus: direct estimation based on mutations conferring monoclonal antibody resistance. J Virol 73:51–54
    [Google Scholar]
  47. Skiadopoulos M. H., Vogel L., Riggs J. M., Surman S. R., Collins P. L., Murphy B. R. 2003; The genome length of human parainfluenza virus type 2 follows the rule of six, and recombinant viruses recovered from non-polyhexameric-length antigenomic cDNAs contain a biased distribution of correcting mutations. J Virol 77:270–279 [CrossRef]
    [Google Scholar]
  48. Snell N. J. 2001; Ribavirin – current status of a broad spectrum antiviral agent. Expert Opin Pharmacother 2:1317–1324 [CrossRef]
    [Google Scholar]
  49. Tao Y., Farsetta D. L., Nibert M. L., Harrison S. C. 2002; RNA synthesis in a cage – structural studies of reovirus polymerase lambda3. Cell 111:733–745 [CrossRef]
    [Google Scholar]
  50. Tapparel C., Hausmann S., Pelet T., Curran J., Kolakofsky D., Roux L. 1997; Inhibition of Sendai virus genome replication due to promoter-increased selectivity: a possible role for the accessory C proteins. J Virol 71:9588–9599
    [Google Scholar]
  51. Tapparel C., Maurice D., Roux L. 1998; The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN)3 is essential for replication. J Virol 72:3117–3128
    [Google Scholar]
  52. Thomas D., Newcomb W. W., Brown J. C., Wall J. S., Hainfeld J. F., Trus B. L., Steven A. C. 1985; Mass and molecular composition of vesicular stomatitis virus: a scanning transmission electron microscopy analysis. J Virol 54:598–607
    [Google Scholar]
  53. Thomas S. M., Lamb R. A., Paterson R. G. 1988; Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5. Cell 54:891–902 [CrossRef]
    [Google Scholar]
  54. van Dijk A. A., Makeyev E. V., Bamford D. H. 2004; Initiation of viral RNA-dependent RNA polymerization. J Gen Virol 85:1077–1093 [CrossRef]
    [Google Scholar]
  55. Vidal S., Curran J., Kolakofsky D. 1990; A stuttering model for paramyxovirus P mRNA editing. EMBO J 9:2017–2022
    [Google Scholar]
  56. Volchkov V. E., Becker S., Volchkova V. A., Ternovoj V. A., Kotov A. N., Netesov S. V., Klenk H. D. 1995; GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214:421–430 [CrossRef]
    [Google Scholar]
  57. Vulliemoz D., Roux L. 2001; “Rule of six”: how does the Sendai virus RNA polymerase keep count?. J Virol 75:4506–4518 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80986-0
Loading
/content/journal/jgv/10.1099/vir.0.80986-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error