1887

Abstract

Human coronavirus NL63 (NL63), a member of the group I coronaviruses, may cause acute respiratory diseases in young children and immunocompromised adults. Like severe acute respiratory syndrome coronavirus (SARS-CoV), NL63 also employs the human angiotensin-converting enzyme 2 (hACE2) receptor for cellular entry. To identify residues in the spike protein of NL63 that are important for hACE2 binding, this study first generated a series of S1-truncated variants, examined their associations with the hACE2 receptor and subsequently mapped a minimal receptor-binding domain (RBD) that consisted of 141 residues (aa 476–616) towards the C terminus of the S1 domain. The data also demonstrated that the NL63 RBD bound to hACE2 more efficiently than its full-length counterpart and had a binding efficiency comparable to the S1 or RBD of SARS-CoV. A further series of RBD variants was generated using site-directed mutagenesis and random mutant library screening assays, and identified 15 residues (C497, Y498, V499, C500, K501, R518, R530, V531, G534, G537, D538, S540, E582, W585 and T591) that appeared to be critical for the RBD–hACE2 association. These critical residues clustered in three separate regions (designated RI, RII and RIII) inside the RBD, which may represent three receptor-binding sites. These results may help to delineate the molecular interactions between the S protein of NL63 and the hACE2 receptor, and may also enhance our understanding of the pathogenesis of NL63 and SARS-CoV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83331-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/4/1015.html?itemId=/content/journal/jgv/10.1099/vir.0.83331-0&mimeType=html&fmt=ahah

References

  1. Arden K. E., Nissen M. D., Sloots T. P., Mackay I. M. 2005; New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia. J Med Virol 75:455–462 [CrossRef]
    [Google Scholar]
  2. Babcock G. J., Esshaki D. J., Thomas W. D. Jr, Ambrosino D. M. 2004; Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol 78:4552–4560 [CrossRef]
    [Google Scholar]
  3. Ballesteros M. L., Sanchez C. M., Enjuanes L. 1997; Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388 [CrossRef]
    [Google Scholar]
  4. Bastien N., Anderson K., Hart L., Van Caeseele P., Brandt K., Milley D., Hatchette T., Weiss E. C., Li Y. 2005; Human coronavirus NL63 infection in Canada. J Infect Dis 191:503–506 [CrossRef]
    [Google Scholar]
  5. Bonavia A., Zelus B. D., Wentworth D. E., Talbot P. J., Holmes K. V. 2003; Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol 77:2530–2538 [CrossRef]
    [Google Scholar]
  6. Ebihara T., Endo R., Ma X., Ishiguro N., Kikuta H. 2005; Detection of human coronavirus NL63 in young children with bronchiolitis. J Med Virol 75:463–465 [CrossRef]
    [Google Scholar]
  7. Esposito S., Bosis S., Niesters H. G., Tremolati E., Begliatti E., Rognoni A., Tagliabue C., Principi N., Osterhaus A. D. 2006; Impact of human coronavirus infections in otherwise healthy children who attended an emergency department. J Med Virol 78:1609–1615 [CrossRef]
    [Google Scholar]
  8. Gallagher T. M., Buchmeier M. J. 2001; Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371–374 [CrossRef]
    [Google Scholar]
  9. Gerna G., Campanini G., Rovida F., Percivalle E., Sarasini A., Marchi A., Baldanti F. 2006; Genetic variability of human coronavirus OC43-, 229E- and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J Med Virol 78:938–949 [CrossRef]
    [Google Scholar]
  10. Godet M., Grosclaude J., Delmas B., Laude H. 1994; Major receptor-binding and neutralization determinants are located within the same domain of the transmissible gastroenteritis virus (coronavirus) spike protein. J Virol 68:8008–8016
    [Google Scholar]
  11. Han T. H., Chung J. Y., Kim S. W., Hwang E. S. 2007; Human coronavirus-NL63 infections in Korean children, 2004–2006. J Clin Virol 38:27–31 [CrossRef]
    [Google Scholar]
  12. Hofmann H., Geier M., Marzi A., Krumbiegel M., Peipp M., Fey G. H., Gramberg T., Pohlmann S. 2004; Susceptibility to SARS coronavirus S protein-driven infection correlates with expression of angiotensin converting enzyme 2 and infection can be blocked by soluble receptor. Biochem Biophys Res Commun 319:1216–1221 [CrossRef]
    [Google Scholar]
  13. Hofmann H., Pyrc K., van der Hoek L., Geier M., Berkhout B., Pohlmann S. 2005; Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102:7988–7993 [CrossRef]
    [Google Scholar]
  14. Hofmann H., Simmons G., Rennekamp A. J., Chaipan C., Gramberg T., Heck E., Geier M., Wegele A., Marzi A. other authors 2006; Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol 80:8639–8652 [CrossRef]
    [Google Scholar]
  15. Holmes K. V., Lai M. M. C. 1996; Coronaviridae : the viruses and their replication. In Fields Virology , 3rd edition. pp 1075–1093 Philadelphia: Lippincott–Raven;
    [Google Scholar]
  16. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T. other authors 2005; Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112–116 [CrossRef]
    [Google Scholar]
  17. Jackwood M. W., Hilt D. A., Callison S. A., Lee C. W., Plaza H., Wade E. 2001; Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Dis 45:366–372 [CrossRef]
    [Google Scholar]
  18. Kaiser L., Regamey N., Roiha H., Deffernez C., Frey U. 2005; Human coronavirus NL63 associated with lower respiratory tract symptoms in early life. Pediatr Infect Dis J 24:1015–1017 [CrossRef]
    [Google Scholar]
  19. Koetz A., Nilsson P., Linden M., van der Hoek L., Ripa T. 2006; Detection of human coronavirus NL63, human metapneumovirus and respiratory syncytial virus in children with respiratory tract infections in south-west Sweden. Clin Microbiol Infect 12:1089–1096 [CrossRef]
    [Google Scholar]
  20. Ksiazek T. G., Erdman D., Goldsmith C. S., Zaki S. R., Peret T., Emery S., Tong S., Urbani C., Comer J. A. other authors 2003; A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348:1953–1966 [CrossRef]
    [Google Scholar]
  21. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y. other authors 2005; A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11:875–879 [CrossRef]
    [Google Scholar]
  22. Kubo H., Yamada Y. K., Taguchi F. 1994; Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J Virol 68:5403–5410
    [Google Scholar]
  23. Lau S. K., Woo P. C., Yip C. C., Tse H., Tsoi H. W., Cheng V. C., Lee P., Tang B. S., Cheung C. H. other authors 2006; Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol 44:2063–2071 [CrossRef]
    [Google Scholar]
  24. Laude H., Godet M., Bernard S., Gelfi J., Duarte M., Delmas B. 1995; Functional domains in the spike protein of transmissible gastroenteritis virus. Adv Exp Med Biol 380:299–304
    [Google Scholar]
  25. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K. other authors 2003; Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454 [CrossRef]
    [Google Scholar]
  26. Li F., Li W., Farzan M., Harrison S. C. 2005a; Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:1864–1868 [CrossRef]
    [Google Scholar]
  27. Li W., Zhang C., Sui J., Kuhn J. H., Moore M. J., Luo S., Wong S. K., Huang I. C., Xu K. other authors 2005b; Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24:1634–1643 [CrossRef]
    [Google Scholar]
  28. Peiris J. S., Lai S. T., Poon L. L., Guan Y., Yam L. Y., Lim W., Nicholls J., Yee W. K., Yan W. W. other authors 2003; Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:1319–1325 [CrossRef]
    [Google Scholar]
  29. Sturman L. S., Holmes K. V. 1984; Proteolytic cleavage of peplomeric glycoprotein E2 of MHV yields two 90K subunits and activates cell fusion. Adv Exp Med Biol 173:25–35
    [Google Scholar]
  30. Sui J., Li W., Murakami A., Tamin A., Matthews L. J., Wong S. K., Moore M. J., Tallarico A. S., Olurinde M. other authors 2004; Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A 101:2536–2541 [CrossRef]
    [Google Scholar]
  31. Suzuki A., Okamoto M., Ohmi A., Watanabe O., Miyabayashi S., Nishimura H. 2005; Detection of human coronavirus-NL63 in children in Japan. Pediatr Infect Dis J 24:645–646 [CrossRef]
    [Google Scholar]
  32. Tresnan D. B., Holmes K. V. 1998; Feline aminopeptidase N is a receptor for all group I coronaviruses. Adv Exp Med Biol 440:69–75
    [Google Scholar]
  33. Tresnan D. B., Levis R., Holmes K. V. 1996; Feline aminopeptidase N serves as a receptor for feline, canine, porcine and human coronaviruses in serogroup I. J Virol 70:8669–8674
    [Google Scholar]
  34. Vabret A., Mourez T., Dina J., van der Hoek L., Gouarin S., Petitjean J., Brouard J., Freymuth F. 2005; Human coronavirus NL63, France. Emerg Infect Dis 11:1225–1229 [CrossRef]
    [Google Scholar]
  35. van der Hoek L., Pyrc K., Jebbink M. F., Vermeulen-Oost W., Berkhout R. J., Wolthers K. C., Wertheim-van Dillen P. M., Kaandorp J., Spaargaren J., Berkhout B. 2004; Identification of a new human coronavirus. Nat Med 10:368–373 [CrossRef]
    [Google Scholar]
  36. van der Hoek L., Sure K., Ihorst G., Stang A., Pyrc K., Jebbink M. F., Petersen G., Forster J., Berkhout B., Uberla K. 2005; Croup is associated with the novel coronavirus NL63. PLoS Med 2:e240 [CrossRef]
    [Google Scholar]
  37. van der Hoek L., Pyrc K., Berkhout B. 2006; Human coronavirus NL63, a new respiratory virus. FEMS Microbiol Rev 30:760–773 [CrossRef]
    [Google Scholar]
  38. Wong S. K., Li W., Moore M. J., Choe H., Farzan M. 2004; A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279:3197–3201
    [Google Scholar]
  39. Woo P. C., Lau S. K., Chu C. M., Chan K. H., Tsoi H. W., Huang Y., Wong B. H., Poon R. W., Cai J. J. other authors 2005; Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79:884–895 [CrossRef]
    [Google Scholar]
  40. Yeager C. L., Ashmun R. A., Williams R. K., Cardellichio C. B., Shapiro L. H., Look A. T., Holmes K. V. 1992; Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420–422 [CrossRef]
    [Google Scholar]
  41. Zhang C., Cui Y., Houston S., Chang L. J. 1996; Protective immunity to HIV-1 in SCID/beige mice reconstituted with peripheral blood lymphocytes of exposed but uninfected individuals. Proc Natl Acad Sci U S A 93:14720–14725 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83331-0
Loading
/content/journal/jgv/10.1099/vir.0.83331-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error