1887

Abstract

A total of 153 non-repeat Acinetobacter spp. clinical isolates obtained in 2015 from Hospital Sultanah Nur Zahirah (HSNZ) in Terengganu, Malaysia, were characterized. Identification of the isolates at species level was performed by ribosomal DNA restriction analysis (ARDRA) followed by sequencing of the rpoB gene. The majority of the isolates (n=128; 83.7 %) were A. baumannii while the rest were identified as A. nosocomialis (n=16), A. calcoaceticus (n=5), A. soli (n=2), A. berezeniae (n=1) and A. variabilis (n=1). Multidrug resistance (MDR) was most prevalent in A. baumannnii (66.4 %) whereas only one non-baumannii isolate (A. nosocomialis) was MDR. The bla OXA-23 gene was the predominant acquired carbapenemase gene (56.2 %) and was significantly associated (P<0.001) with carbapenem resistance. However, no significant association was found for carbapenem resistance and isolates that contained the ISAba1-bla OXA-51 configuration.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000844
2018-09-25
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/67/11/1538.html?itemId=/content/journal/jmm/10.1099/jmm.0.000844&mimeType=html&fmt=ahah

References

  1. Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis 2014; 71:292–301 [View Article][PubMed]
    [Google Scholar]
  2. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008; 21:538–582 [View Article][PubMed]
    [Google Scholar]
  3. Chusri S, Chongsuvivatwong V, Rivera JI, Silpapojakul K, Singkhamanan K et al. Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrob Agents Chemother 2014; 58:4172–4179 [View Article][PubMed]
    [Google Scholar]
  4. Clark NM, Zhanel GG, Lynch JP. Emergence of antimicrobial resistance among Acinetobacter species: a global threat. Curr Opin Crit Care 2016; 22:491–499 [View Article][PubMed]
    [Google Scholar]
  5. Marí-Almirall M, Cosgaya C, Higgins PG, van Assche A, Telli M et al. MALDI-TOF/MS identification of species from the Acinetobacter baumannii (Ab) group revisited: inclusion of the novel A. seifertii and A. dijkshoorniae species. Clin Microbiol Infect 2017; 23:210.e1–21210 [View Article]
    [Google Scholar]
  6. Nemec A, Krizova L, Maixnerova M, Sedo O, Brisse S et al. Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. Int J Syst Evol Microbiol 2015; 65:934–942 [View Article][PubMed]
    [Google Scholar]
  7. Cosgaya C, Marí-Almirall M, van Assche A, Fernández-Orth D, Mosqueda N et al. Acinetobacter dijkshoorniae sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex mainly recovered from clinical samples in different countries. Int J Syst Evol Microbiol 2016; 66:4105–4111 [View Article][PubMed]
    [Google Scholar]
  8. Turton JF, Shah J, Ozongwu C, Pike R. Incidence of Acinetobacter species other than A. baumannii among clinical isolates of Acinetobacter: evidence for emerging species. J Clin Microbiol 2010; 48:1445–1449 [View Article][PubMed]
    [Google Scholar]
  9. Li XM, Choi JA, Choi IS, Kook JK, Chang YH et al. Development and evaluation of species-specific PCR for detection of nine Acinetobacter species. Ann Clin Lab Sci 2016; 46:270–278[PubMed]
    [Google Scholar]
  10. Parte AC. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  11. LPSN Genus Acinetobacter. In List of Prokaryotic Names with Standing In nomenclature 2018 www.bacterio.net/acinetobacter.html [accessed 18 July 2018]
    [Google Scholar]
  12. Kong BH, Hanifah YA, Yusof MY, Thong KL. Antimicrobial susceptibility profiling and genomic diversity of multidrug-resistant Acinetobacter baumannii isolates from a teaching hospital in Malaysia. Jpn J Infect Dis 2011; 64:337–340[PubMed]
    [Google Scholar]
  13. Lee MJ, Jang SJ, Li XM, Park G, Kook JK et al. Comparison of rpoB gene sequencing, 16S rRNA gene sequencing, gyrB multiplex PCR, and the VITEK2 system for identification of Acinetobacter clinical isolates. Diagn Microbiol Infect Dis 2014; 78:29–34 [View Article][PubMed]
    [Google Scholar]
  14. La Scola B, Gundi VA, Khamis A, Raoult D. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 2006; 44:827–832 [View Article][PubMed]
    [Google Scholar]
  15. Gundi VA, Dijkshoorn L, Burignat S, Raoult D, La Scola B. Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species. Microbiology 2009; 155:2333–2341 [View Article][PubMed]
    [Google Scholar]
  16. Lee YT, Kuo SC, Yang SP, Lin YT, Chiang DH et al. Bacteremic nosocomial pneumonia caused by Acinetobacter baumannii and Acinetobacter nosocomialis: a single or two distinct clinical entities?. Clin Microbiol Infect 2013; 19:640–645 [View Article][PubMed]
    [Google Scholar]
  17. Park KH, Shin JH, Lee SY, Kim SH, Jang MO et al. The clinical characteristics, carbapenem resistance, and outcome of Acinetobacter bacteremia according to genospecies. PLoS One 2013; 8:e65026 [View Article][PubMed]
    [Google Scholar]
  18. Mohd Rani F, A Rahman NI, Ismail S, Alattraqchi AG, Cleary DW et al. Acinetobacter spp. infections in Malaysia: a review of antimicrobial resistance trends, mechanisms and epidemiology. Front Microbiol 2017; 8:2479 [View Article][PubMed]
    [Google Scholar]
  19. Lean SS, Suhaili Z, Ismail S, Rahman NI, Othman N et al. Prevalence and genetic characterization of carbapenem- and polymyxin-resistant Acinetobacter baumannii isolated from a Tertiary Hospital in Terengganu, Malaysia. ISRN Microbiol 2014; 2014:1–9 [View Article][PubMed]
    [Google Scholar]
  20. Lean SS, Yeo CC, Suhaili Z, Thong KL. Comparative genomics of two ST 195 carbapenem-resistant Acinetobacter baumannii with different susceptibility to polymyxin revealed underlying resistance mechanism. Front Microbiol 2016; 6:1445 [View Article][PubMed]
    [Google Scholar]
  21. Poirel L, Bonnin RA, Nordmann P. Genetic basis of antibiotic resistance in pathogenic Acinetobacter species. IUBMB Life 2011; 63:1061–1067 [View Article][PubMed]
    [Google Scholar]
  22. Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A et al. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev 2017; 30:1–22 [View Article][PubMed]
    [Google Scholar]
  23. Vaneechoutte M, Dijkshoorn L, Tjernberg I, Elaichouni A, de Vos P et al. Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J Clin Microbiol 1995; 33:11–15[PubMed]
    [Google Scholar]
  24. Dijkshoorn L, van Harsselaar B, Tjernberg I, Bouvet PJ, Vaneechoutte M. Evaluation of amplified ribosomal DNA restriction analysis for identification of Acinetobacter genomic species. Syst Appl Microbiol 1998; 21:33–39 [View Article][PubMed]
    [Google Scholar]
  25. CLSI M100-S27 Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Seventh Informational Supplement, Twenty-Seventh Informational Supplement. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2017
    [Google Scholar]
  26. Nicolau DP, Quintana A, Korth- Bradley JM, Wible M, Dowzicky MJ. A rationale for maintaining current tigecycline breakpoints as established by the usa food and drug administration. Arch Clin Microbiol 2015; 6:7
    [Google Scholar]
  27. van den Broek PJ, van der Reijden TJ, van Strijen E, Helmig-Schurter AV, Bernards AT et al. Endemic and epidemic Acinetobacter species in a university hospital: an 8-year survey. J Clin Microbiol 2009; 47:3593–3599 [View Article][PubMed]
    [Google Scholar]
  28. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–281 [View Article][PubMed]
    [Google Scholar]
  29. de Vos D, Pirnay JP, Bilocq F, Jennes S, Verbeken G et al. Molecular epidemiology and clinical impact of Acinetobacter calcoaceticus-baumannii complex in a belgian burn wound center. PLoS One 2016; 11:e0156237 [View Article][PubMed]
    [Google Scholar]
  30. Fujikura Y, Yuki A, Hamamoto T, Kawana A, Ohkusu K et al. Blood stream infections caused by Acinetobacter baumannii group in Japan - epidemiological and clinical investigation. J Infect Chemother 2016; 22:366–371 [View Article][PubMed]
    [Google Scholar]
  31. Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006; 258:72–77 [View Article][PubMed]
    [Google Scholar]
  32. Figueiredo S, Poirel L, Croize J, Recule C, Nordmann P. In vivo selection of reduced susceptibility to carbapenems in Acinetobacter baumannii related to ISAba1-mediated overexpression of the natural bla(OXA-66) oxacillinase gene. Antimicrob Agents Chemother 2009; 53:2657–2659 [View Article][PubMed]
    [Google Scholar]
  33. Ewers C, Klotz P, Leidner U, Stamm I, Prenger-Berninghoff E et al. OXA-23 and ISAba1-OXA-66 class D β-lactamases in Acinetobacter baumannii isolates from companion animals. Int J Antimicrob Agents 2017; 49:37–44 [View Article][PubMed]
    [Google Scholar]
  34. Biglari S, Alfizah H, Ramliza R, Rahman MM. Molecular characterization of carbapenemase and cephalosporinase genes among clinical isolates of Acinetobacter baumannii in a tertiary medical centre in Malaysia. J Med Microbiol 2015; 64:53–58 [View Article][PubMed]
    [Google Scholar]
  35. Wang D, Yan D, Hou W, Zeng X, Qi Y et al. Characterization of blaOxa-23 gene regions in isolates of Acinetobacter baumannii. J Microbiol Immunol Infect 2015; 48:284–290 [View Article][PubMed]
    [Google Scholar]
  36. Mugnier PD, Poirel L, Nordmann P. Functional analysis of insertion sequence ISAba1, responsible for genomic plasticity of Acinetobacter baumannii. J Bacteriol 2009; 191:2414–2418 [View Article][PubMed]
    [Google Scholar]
  37. Boo TW, Crowley B. Detection of blaOXA-58 and blaOXA-23-like genes in carbapenem-susceptible Acinetobacter clinical isolates: should we be concerned?. J Med Microbiol 2009; 58:839–841 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000844
Loading
/content/journal/jmm/10.1099/jmm.0.000844
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error