1887

Abstract

. Correct serotype identification of (pneumococcus) is important for monitoring disease epidemiology and assessing the impacts of pneumococcal vaccines. Furthermore, correct identification and differentiation of the pathogenic from closely related commensal species of the mitis group of the genus are essential for correct serotype identification.

. A new protocol for determining the existing 98 serotypes of pneumococcus was developed, applying two PCR amplifications and amplicon sequencing, using newly designed internal primers. The new protocol was validated using genome sequences, reference strains with confirmed serotypes and clinical isolates, and comparing the results with those from the traditional Quellung reaction or antiserum panel gel precipitation, in addition to real-time PCR analysis. The taxonomic identifications of 422 publicly available (GenBank) genome sequences of and were assessed by whole-genome sequence average nucleotide identity based on (ANIb) analysis.

. The proposed sequetyping protocol generates a 1017 bp whole region sequence, increasing resolution for serotype identification in pneumococcus isolates. The identifications of all GenBank genome sequences of were confirmed, whereas most of the and almost all of the genome sequences did not fulfil the ANIb thresholds for species-level identification. The housekeeping biomarker gene, , correctly identified but often misclassified and as .

. These studies affirm the importance of applying reliable identification protocols for before serotyping; our protocols provide reliable diagnostic tools, as well as an improved workflow, for serotype identification of pneumococcus and differentiation of serogroup 6 types.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.001022
2019-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/68/8/1173.html?itemId=/content/journal/jmm/10.1099/jmm.0.001022&mimeType=html&fmt=ahah

References

  1. Johnson HL, Deloria-Knoll M, Levine OS, Stoszek SK, Freimanis Hance L et al. Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLoS Med 2010; 7:e1000348 [View Article]
    [Google Scholar]
  2. Collaborators G. Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the global burden of Disease Study 2015. Lancet Infect Dis 2017; 17:909–948
    [Google Scholar]
  3. Nelson AL, Roche AM, Gould JM, Chim K, Ratner AJ et al. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect Immun 2007; 75:83–90 [View Article]
    [Google Scholar]
  4. Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev 2015; 28:871–899 [View Article]
    [Google Scholar]
  5. Geno KA, Saad JS, Nahm MH. Discovery of novel pneumococcal serotype 35D, a natural WciG-Deficient variant of serotype 35B. J Clin Microbiol 2017; 55:1416–1425 [View Article]
    [Google Scholar]
  6. Hicks LA, Harrison LH, Flannery B, Hadler JL, Schaffner W et al. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998–2004. J Infect Dis 2007; 196:1346–1354 [View Article]
    [Google Scholar]
  7. Esposito S, Principi N. Impacts of the 13-Valent pneumococcal conjugate vaccine in children. J Immunol Res 2015; 2015:1–6 [View Article]
    [Google Scholar]
  8. LeBlanc JJ, ElSherif M, Ye L, MacKinnon-Cameron D, Li L et al. Burden of vaccine-preventable pneumococcal disease in hospitalized adults: a Canadian immunization Research network (CIRN) serious outcomes surveillance (SOS) network study. Vaccine 2017; 35:3647–3654 [View Article]
    [Google Scholar]
  9. Diao WQ, Shen N, Yu PX, Liu BB, He B. Efficacy of 23-valent pneumococcal polysaccharide vaccine in preventing community-acquired pneumonia among immunocompetent adults: a systematic review and meta-analysis of randomized trials. Vaccine 2016; 34:1496–1503 [View Article]
    [Google Scholar]
  10. Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet 2011; 378:1962–1973 [View Article]
    [Google Scholar]
  11. Mavroidi A, Godoy D, Aanensen DM, Robinson DA, Hollingshead SK et al. Evolutionary genetics of the capsular locus of serogroup 6 pneumococci. J Bacteriol 2004; 186:8181–8192 [View Article]
    [Google Scholar]
  12. Loman NJ, Gladstone RA, Constantinidou C, Tocheva AS, Jefferies JM et al. Clonal expansion within pneumococcal serotype 6C after use of seven-valent vaccine. PLoS One 2013; 8:e64731 [View Article]
    [Google Scholar]
  13. Galanis I, Lindstrand A, Darenberg J, Browall S, Nannapaneni P et al. Effects of PCV7 and PCV13 on invasive pneumococcal disease and carriage in Stockholm, Sweden. Eur Respir J 2016; 47:1208–1218 [View Article]
    [Google Scholar]
  14. Lindstrand A, Galanis I, Darenberg J, Morfeldt E, Naucler P et al. Unaltered pneumococcal carriage prevalence due to expansion of non-vaccine types of low invasive potential 8 years after vaccine introduction in Stockholm, Sweden. Vaccine 2016; 34:4565–4571 [View Article]
    [Google Scholar]
  15. Neufeld FHL. Weitere untersuchungen uber pneumokokken-heilsera. III Mitteilung. Arbeiten aus em Kaiserlichen Gesundheitsamte 34, pneumococcal healing sera. Communications from the Royal Health Department; 1910 pp 293–304
    [Google Scholar]
  16. Pai R, Gertz RE, Beall B. Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J Clin Microbiol 2006; 44:124–131 [View Article]
    [Google Scholar]
  17. Varghese R, Jayaraman R, Veeraraghavan B. Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era. J Microbiol Methods 2017; 141:48–54 [View Article]
    [Google Scholar]
  18. Leung MH, Bryson K, Freystatter K, Pichon B, Edwards G et al. Sequetyping: serotyping Streptococcus pneumoniae by a single PCR sequencing strategy. J Clin Microbiol 2012; 50:2419–2427 [View Article]
    [Google Scholar]
  19. Kawamura Y, Hou XG, Sultana F, Miura H, Ezaki T. Determination of 16S rRNA sequences of Streptococcus mitis and Streptococcus gordonii and phylogenetic relationships among members of the genus Streptococcus. Int J Syst Bacteriol 1995; 45:406–408 [View Article]
    [Google Scholar]
  20. Arbique JC, Poyart C, Trieu-Cuot P, Quesne G, Carvalho Mda G et al. Accuracy of phenotypic and genotypic testing for identification of Streptococcus pneumoniae and description of Streptococcus pseudopneumoniae sp. nov. J Clin Microbiol 2004; 42:4686–4696 [View Article]
    [Google Scholar]
  21. Welker M, Moore ER. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 2011; 34:2–11 [View Article]
    [Google Scholar]
  22. Scholz CF, Poulsen K, Kilian M. Novel molecular method for identification of Streptococcus pneumoniae applicable to clinical microbiology and 16S rRNA sequence-based microbiome studies. J Clin Microbiol 2012; 50:1968–1973 [View Article]
    [Google Scholar]
  23. Bishop CJ, Aanensen DM, Jordan GE, Kilian M, Hanage WP et al. Assigning strains to bacterial species via the Internet. BMC Biol 2009; 7:3 [View Article]
    [Google Scholar]
  24. Glazunova OO, Raoult D, Roux V. Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Microbiol 2009; 59:2317–2322 [View Article]
    [Google Scholar]
  25. Hoshino T, Fujiwara T, Kilian M. Use of phylogenetic and phenotypic analyses to identify nonhemolytic streptococci isolated from bacteremic patients. J Clin Microbiol 2005; 43:6073–6085 [View Article]
    [Google Scholar]
  26. Teng LJ, Hsueh PR, Tsai JC, Chen PW, Hsu JC et al. groESL sequence determination, phylogenetic analysis, and species differentiation for viridans group streptococci. J Clin Microbiol 2002; 40:3172–3178 [View Article]
    [Google Scholar]
  27. Kawamura Y, Shu SE, Whiley RA, Ezaki T, Hardie JM. Genetic approaches to the identification of the mitis group within the genus Streptococcus. Microbiology 1999; 145:2605–2613 [View Article]
    [Google Scholar]
  28. Salvà-Serra F, Connolly G, Moore ERB, Gonzales-Siles L. Detection of “Xisco” gene for identification of Streptococcus pneumoniae isolates. Diagn Microbiol Infect Dis 2018; 90:248–250 [View Article]
    [Google Scholar]
  29. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  31. Slotved HC, Dalby T, Hoffmann S. The effect of pneumococcal conjugate vaccines on the incidence of invasive pneumococcal disease caused by ten non-vaccine serotypes in Denmark. Vaccine 2016; 34:769–774 [View Article]
    [Google Scholar]
  32. Jauneikaite E, Tocheva AS, Jefferies JM, Gladstone RA, Faust SN et al. Current methods for capsular typing of Streptococcus pneumoniae . J Microbiol Methods 2015; 113:41–49 [View Article]
    [Google Scholar]
  33. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res 2017; 45:D37–D42 [View Article]
    [Google Scholar]
  34. Jensen A, Scholz CF, Kilian M. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus . Int J Syst Evol Microbiol 2016; 66:4803–4820
    [Google Scholar]
  35. Welinder-Olsson C, Kjellin E, Badenfors M, Kaijser B. Improved microbiological techniques using the polymerase chain reaction and pulsed-field gel electrophoresis for diagnosis and follow-up of enterohaemorrhagic Escherichia coli infection. Eur J Clin Microbiol Infect Dis 2000; 19:843–851 [View Article]
    [Google Scholar]
  36. Goris J, Klappenbach JA, Vandamme P, Coenye T, Konstantinidis KT et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article]
    [Google Scholar]
  38. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front Microbiol 2015; 6:214 [View Article]
    [Google Scholar]
  39. Caraux G, Pinloche S. PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics 2005; 21:1280–1281 [View Article]
    [Google Scholar]
  40. Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2006; 2:e31 [View Article]
    [Google Scholar]
  41. da Gloria Carvalho M, Pimenta FC, Jackson D, Roundtree A, Ahmad Y et al. Revisiting pneumococcal carriage by use of broth enrichment and PCR techniques for enhanced detection of carriage and serotypes. J Clin Microbiol 2010; 48:1611–1618 [View Article]
    [Google Scholar]
  42. Pimenta FC, Roundtree A, Soysal A, Bakir M, du Plessis M et al. Sequential triplex real-time PCR assay for detecting 21 pneumococcal capsular serotypes that account for a high global disease burden. J Clin Microbiol 2013; 51:647–652 [View Article]
    [Google Scholar]
  43. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 2015; 38:209–216 [View Article]
    [Google Scholar]
  44. Hathaway LJ, Stutzmann Meier P, Bättig P, Aebi S, Mühlemann K. A homologue of aliB is found in the capsule region of nonencapsulated Streptococcus pneumoniae . J Bacteriol 2004; 186:3721–3729 [View Article]
    [Google Scholar]
  45. Jin P, Xiao M, Kong F, Oftadeh S, Zhou F et al. Simple, accurate, serotype-specific PCR assay to differentiate Streptococcus pneumoniae serotypes 6A, 6B, and 6C. J Clin Microbiol 2009; 47:2470–2474 [View Article]
    [Google Scholar]
  46. Richter SS, Heilmann KP, Dohrn CL, Riahi F, Beekmann SE et al. Accuracy of phenotypic methods for identification of Streptococcus pneumoniae isolates included in surveillance programs. J Clin Microbiol 2008; 46:2184–2188 [View Article]
    [Google Scholar]
  47. Rochs K. Zur Differentialdiagnose Der Streptokokken und Pneumokokken. Virchows Arch Pathol Anat Physiol Klin Med 1915; 220:327–346 [View Article]
    [Google Scholar]
  48. Pikis A, Campos JM, Rodriguez WJ, Keith JM. Optochin resistance in Streptococcus pneumoniae: mechanism, significance, and clinical implications. J Infect Dis 2001; 184:582–590 [View Article]
    [Google Scholar]
  49. Keith ER, Podmore RG, Anderson TP, Murdoch DR. Characteristics of Streptococcus pseudopneumoniae isolated from purulent sputum samples. J Clin Microbiol 2006; 44:923–927 [View Article]
    [Google Scholar]
  50. Rolo D, S Simões A, Domenech A, Fenoll A, Liñares J et al. Disease isolates of Streptococcus pseudopneumoniae and non-typeable S. pneumoniae presumptively identified as atypical S. pneumoniae in Spain. PLoS One 2013; 8:e57047 [View Article]
    [Google Scholar]
  51. van Prehn J, van Veen SQ, Schelfaut JJ, Wessels E. MALDI-TOF mass spectrometry for differentiation between Streptococcus pneumoniae and Streptococcus pseudopneumoniae . Diagn Microbiol Infect Dis 2016; 85:9–11 [View Article]
    [Google Scholar]
  52. Chi F, Nolte O, Bergmann C, Ip M, Hakenbeck R. Crossing the barrier: evolution and spread of a major class of mosaic PBP2x in Streptococcus pneumoniae, S. mitis and S. oralis . Int J Med Microbiol 2007; 297:503–512 [View Article]
    [Google Scholar]
  53. Kilian M, Poulsen K, Blomqvist T, Håvarstein LS, Bek-Thomsen M et al. Evolution of Streptococcus pneumoniae and its close commensal relatives. PLoS One 2008; 3:e2683 [View Article]
    [Google Scholar]
  54. Kilian M, Riley DR, Jensen A, Brüggemann H, Tettelin H. Parallel evolution of Streptococcus pneumoniae and Streptococcus mitis to pathogenic and mutualistic lifestyles. mBio 2014; 5:e01490–14 [View Article]
    [Google Scholar]
  55. Whatmore AM, Efstratiou A, Pickerill AP, Broughton K, Woodard G et al. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of "Atypical" pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect Immun 2000; 68:1374–1382 [View Article]
    [Google Scholar]
  56. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  57. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  58. Roach DJ, Burton JN, Lee C, Stackhouse B, Butler-Wu SM et al. Correction: a year of infection in the intensive care unit: prospective whole genome sequencing of bacterial clinical isolates reveals cryptic transmissions and novel microbiota. PLoS Genet 2017; 13:e1006724 [View Article]
    [Google Scholar]
  59. McAvin JC, Reilly PA, Roudabush RM, Barnes WJ, Salmen A et al. Sensitive and specific method for rapid identification of Streptococcus pneumoniae using real-time fluorescence PCR. J Clin Microbiol 2001; 39:3446–3451 [View Article]
    [Google Scholar]
  60. Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ et al. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol 2001; 39:1553–1558 [View Article]
    [Google Scholar]
  61. Morrison KE, Lake D, Crook J, Carlone GM, Ades E et al. Confirmation of psaA in all 90 serotypes of Streptococcus pneumoniae by PCR and potential of this assay for identification and diagnosis. J Clin Microbiol 2000; 38:434–437
    [Google Scholar]
  62. O'Neill AM, Gillespie SH, Whiting GC. Detection of penicillin susceptibility in Streptococcus pneumoniae by pbp2b PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 1999; 37:157–160
    [Google Scholar]
  63. O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 2009; 374:893–902 [View Article]
    [Google Scholar]
  64. Brito DA, Ramirez M, de Lencastre H. Serotyping Streptococcus pneumoniae by multiplex PCR. J Clin Microbiol 2003; 41:2378–2384 [View Article]
    [Google Scholar]
  65. Jourdain S, Drèze PA, Vandeven J, Verhaegen J, Melderen LV et al. Sequential multiplex PCR assay for determining capsular serotypes of colonizing S. pneumoniae . BMC Infect Dis 2011; 11:100 [View Article]
    [Google Scholar]
  66. Richter SS, Heilmann KP, Dohrn CL, Riahi F, Diekema DJ et al. Evaluation of pneumococcal serotyping by multiplex PCR and quellung reactions. J Clin Microbiol 2013; 51:4193–4195 [View Article]
    [Google Scholar]
  67. Gillis HD, Demczuk WHB, Griffith A, Martin I, Warhuus M et al. PCR-based discrimination of emerging Streptococcus pneumoniae serotypes 22F and 33F. J Microbiol Methods 2018; 144:99–106 [View Article]
    [Google Scholar]
  68. Tanmoy AM, Saha S, Darmstadt GL, Whitney CG, Saha SK. PCR-based serotyping of Streptococcus pneumoniae from culture-negative specimens: novel primers for detection of serotypes within serogroup 18. J Clin Microbiol 2016; 54:2178–2181 [View Article]
    [Google Scholar]
  69. Dube FS, van Mens SP, Robberts L, Wolter N, Nicol P et al. Comparison of a real-time multiplex PCR and Sequetyping assay for pneumococcal serotyping. PLoS One 2015; 10:e0137349 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.001022
Loading
/content/journal/jmm/10.1099/jmm.0.001022
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error