1887

Abstract

The electrically conductive pili (e-pili) of Geobactersulfurreducens have environmental and practical significance because they can facilitate electron transfer to insoluble Fe(III) oxides; to other microbial species; and through electrically conductive biofilms. E-pili conductivity has been attributed to the truncated PilA monomer, which permits tight packing of aromatic amino acids to form a conductive path along the length of e-pili. In order to better understand the evolution and distribution of e-pili in the microbial world, type IVa PilA proteins from various Gram-negative and Gram-positive bacteria were examined with a particular emphasis on Fe(III)-respiring bacteria. E-pilin genes are primarily restricted to a tight phylogenetic group in the order Desulfuromonadales. The downstream gene in all but one of the Desulfuromonadales that possess an e-pilin gene is a gene previously annotated as ‘pilA–C’ that has characteristics suggesting that it may encode an outer-membrane protein. Other genes associated with pilin function are clustered with e-pilin and ‘pilA–C’ genes in the Desulfuromonadales. In contrast, in the few bacteria outside the Desulfuromonadales that contain e-pilin genes, the other genes required for pilin function may have been acquired through horizontal gene transfer. Of the 95 known Fe(III)-reducing micro-organisms for which genomes are available, 80 % lack e-pilin genes, suggesting that e-pili are just one of several mechanisms involved in extracellular electron transport. These studies provide insight into where and when e-pili are likely to contribute to extracellular electron transport processes that are biogeochemically important and involved in bioenergy conversions.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000072
2016-08-25
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/mgen/2/8/mgen000072.html?itemId=/content/journal/mgen/10.1099/mgen.0.000072&mimeType=html&fmt=ahah

References

  1. Adhikari R. Y., Malvankar N. S., Tuominen M. T., Lovley D. R. 2016; Conductivity of individual Geobacter pili. RSC Adv. 6:8354–8357 [View Article]
    [Google Scholar]
  2. Altschul S., Madden T., Schaffer A., Zhang J., Zhang Z., Miller W., Lipman D. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389–3402 [View Article]
    [Google Scholar]
  3. Ayers M., Howell P. L., Burrows L. L. 2010; Architecture of the type II secretion and type IV pilus machineries. Future Microbiol 5:1203–1218 [View Article][PubMed]
    [Google Scholar]
  4. Bernard C. S., Bordi C., Termine E., Filloux A., de Bentzmann S. 2009; Organization and PprB-dependent control of the Pseudomonas aeruginosa tad locus, involved in Flp pilus biology. J Bacteriol 191:1961–1973 [View Article][PubMed]
    [Google Scholar]
  5. Bieber D., Ramer S. W., Wu C. Y., Murray W. J., Tobe T., Fernandez R., Schoolnik G. K. 1998; Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280:2114–2118 [View Article][PubMed]
    [Google Scholar]
  6. Bond D. R., Lovley D. R. 2003; Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555 [View Article][PubMed]
    [Google Scholar]
  7. Burrows L. L. 2012; Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 66:493–520 [View Article][PubMed]
    [Google Scholar]
  8. Castro L., Vera M., Muñoz JÁ., Blázquez M. L., González F., Sand W., Ballester A. 2014; Aeromonas hydrophila produces conductive nanowires. Res Microbiol 165:794–802 [View Article][PubMed]
    [Google Scholar]
  9. Chun A. L. 2014; Bacterial nanowires: an extended membrane. Nat Nanotechnol 9:750 [View Article][PubMed]
    [Google Scholar]
  10. Craig L., Pique M. E., Tainer J. A. 2004; Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378 [View Article][PubMed]
    [Google Scholar]
  11. Craig L., Taylor R. K., Pique M. E., Adair B. D., Arvai A. S., Singh M., Lloyd S. J., Shin D. S., Getzoff E. D. et al. 2003; Type IV pilin structure and assembly: X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin. Mol Cell 11:1139–1150[PubMed]
    [Google Scholar]
  12. Craig L., Volkmann N., Arvai A. S., Pique M. E., Yeager M., Egelman E. H., Tainer J. A. 2006; Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell 23:651–662 [View Article][PubMed]
    [Google Scholar]
  13. Cuff J. A., Barton G. J. 2000; Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40:502–511 [View Article][PubMed]
    [Google Scholar]
  14. Dayhoff M. O., Schwartz R. M., Orcutt B. C. 1978; A Model of Evolutionary Change in Proteins. In Atlas of Protein Sequence and Structure , pp. 345–352 Edited by Dayhoff M. O. Washington DC: National Biomedical Research Foundation;
    [Google Scholar]
  15. Drozdetskiy A., Cole C., Procter J., Barton G. J. 2015; JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–394 [View Article][PubMed]
    [Google Scholar]
  16. Eaktasang N., Kang C. S., Lim H., Kwean O. S., Cho S., Kim Y., Kim H. S. 2016; Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell. Bioresour Technol 210: [View Article][PubMed]
    [Google Scholar]
  17. Eddy S. R. 2008; A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput Biol 4:e1000069 [View Article][PubMed]
    [Google Scholar]
  18. Eddy S. R. 2011; Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195 [View Article][PubMed]
    [Google Scholar]
  19. Feliciano G. T., Steidl R. J., Reguera G. 2015; Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys Chem Chem Phys 17:22217–22226 [View Article][PubMed]
    [Google Scholar]
  20. Finn R. D., Coggill P., Eberhardt R. Y., Eddy S. R., Mistry J., Mitchell A. L., Potter S. C., Punta M., Qureshi M. et al. 2016; The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–285 [View Article][PubMed]
    [Google Scholar]
  21. Ford B., Verger D., Dodson K., Volkan E., Kostakioti M., Elam J., Pinkner J., Waksman G., Hultgren S. 2012; The structure of the PapD–PapGII pilin complex reveals an open and flexible P5 pocket. J Bacteriol 194:6390–6397 [View Article][PubMed]
    [Google Scholar]
  22. Galdiero S., Falanga A., Cantisani M., Tarallo R., Della Pepa M. E., D'Oriano V., Galdiero M. 2012; Microbe–host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 13:843–854 [View Article][PubMed]
    [Google Scholar]
  23. Giltner C. L., Nguyen Y., Burrows L. L. 2012; Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev 76:740–772 [View Article][PubMed]
    [Google Scholar]
  24. Gorby Y. A., Yanina S., McLean J. S., Rosso K. M., Moyles D., Dohnalkova A., Beveridge T. J., Chang I. S., Kim B. H. et al. 2006; Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363 [View Article][PubMed]
    [Google Scholar]
  25. Gorgel M., Ulstrup J. J., Bøggild A., Jones N. C., Hoffmann S. V., Nissen P., Boesen T. 2015; High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis. BMC Struct Biol 15:4 [View Article][PubMed]
    [Google Scholar]
  26. Hofmann K., Stoffel W. 1993; TMbase - A database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374:166
    [Google Scholar]
  27. Imam S., Chen Z., Roos D. S., Pohlschröder M. 2011; Identification of surprisingly diverse type IV pili, across a broad range of Gram-positive bacteria. PLoS One 6:e28919 [View Article][PubMed]
    [Google Scholar]
  28. Kachlany S. C., Planet P. J., Desalle R., Fine D. H., Figurski D. H., Kaplan J. B. 2001; flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. Mol Microbiol 40:542–554 [View Article][PubMed]
    [Google Scholar]
  29. Katoh K., Standley D. M. 2013; MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780 [View Article][PubMed]
    [Google Scholar]
  30. Kim S. J., Park S. J., Jung M. Y., Kim J. G., Min U. G., Hong H. J., Rhee S. K. 2014; Draft genome sequence of an aromatic compound-degrading bacterium, Desulfobacula sp. TS, belonging to the Deltaproteobacteria. FEMS Microbiol Lett 360:9–12 [View Article][PubMed]
    [Google Scholar]
  31. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [View Article][PubMed]
    [Google Scholar]
  32. Kuever J., Könneke M., Galushko A., Drzyzga O. 2001; Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb. nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int J Syst Evol Microbiol 51:171–177 [View Article][PubMed]
    [Google Scholar]
  33. Le S. Q., Gascuel O. 2008; An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320 [View Article][PubMed]
    [Google Scholar]
  34. Li Y., Li H. 2014; Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors. J Basic Microbiol 54:226–231 [View Article][PubMed]
    [Google Scholar]
  35. Liu X., Tremblay P. L., Malvankar N. S., Nevin K. P., Lovley D. R., Vargas M. 2014; A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe(III) oxide reduction and current production. Appl Environ Microbiol 80:1219–1224 [View Article][PubMed]
    [Google Scholar]
  36. Lovley D. R., Malvankar N. S. 2015; Seeing is believing: novel imaging techniques help clarify microbial nanowire structure and function. Environ Microbiol 17:2209–2215 [View Article][PubMed]
    [Google Scholar]
  37. Lovley D. R., Phillips E. J. 1994; Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol 60:2394–2399[PubMed]
    [Google Scholar]
  38. Lovley D. R., Coates J. D., Blunt-Harris E. L., Phillips E. J. P., Woodward J. C. 1996; Humic substances as electron acceptors for microbial respiration. Nature 382:445–448 [View Article]
    [Google Scholar]
  39. Lovley D. R., Roden E. E., Phillips E. J. P., Woodward J. C. 1993; Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geology 113:41–53 [View Article]
    [Google Scholar]
  40. Lovley D. R., Ueki T., Zhang T., Malvankar N. S., Shrestha P. M., Flanangan K. A., Aklujkar M. A., Butler J. E., Giloteaux L. et al. 2011; Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Micro Physiol 59:1–100
    [Google Scholar]
  41. Löytynoja A., Goldman N. 2005; An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci U S A 102:10557–10562 [View Article][PubMed]
    [Google Scholar]
  42. Malvankar N. S., Lovley D. R. 2014; Microbial nanowires for bioenergy applications. Curr Opin Biotechnol 27:88–95 [View Article][PubMed]
    [Google Scholar]
  43. Malvankar N. S., Vargas M., Nevin K. P., Franks A. E., Leang C., Kim B. C., Inoue K., Mester T., Covalla S. F. et al. 2011; Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579 [View Article][PubMed]
    [Google Scholar]
  44. Malvankar N. S., Vargas M., Nevin K., Tremblay P. L., Evans-Lutterodt K., Nykypanchuk D., Martz E., Tuominen M. T., Lovley D. R. 2015; Structural basis for metallic-like conductivity in microbial nanowires. MBio 6:e00084 [View Article][PubMed]
    [Google Scholar]
  45. Malvankar N. S., Yalcin S. E., Tuominen M. T., Lovley D. R. 2014; Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nat Nanotechnol 9:1012–1017 [View Article][PubMed]
    [Google Scholar]
  46. Marchler-Bauer A., Derbyshire M. K., Gonzales N. R., Lu S., Chitsaz F., Geer L. Y., Geer R. C., He J., Gwadz M. et al. 2015; CDD: NCBI's conserved domain database. Nucleic Acids Res 43:D222–226 [View Article][PubMed]
    [Google Scholar]
  47. Mattick J. S. 2002; Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314 [View Article][PubMed]
    [Google Scholar]
  48. Mouser P. J., N'Guessan A. L., Elifantz H., Holmes D. E., Williams K. H., Wilkins M. J., Long P. E., Lovley D. R. 2009; Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater. Environ Sci Technol 43:4386–4392 [View Article][PubMed]
    [Google Scholar]
  49. Nevin K. P., Lovley D. R. 2000; Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ. Sci. Technol 34:2472–2478 [View Article]
    [Google Scholar]
  50. Nevin K. P., Lovley D. R. 2002; Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159 [View Article]
    [Google Scholar]
  51. Nevin K. P., Kim B. C., Glaven R. H., Johnson J. P., Woodard T. L., Methé B. A., Didonato R. J., Covalla S. F., Franks A. E. et al. 2009; Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 4: [View Article][PubMed]
    [Google Scholar]
  52. Nivaskumar M., Francetic O. 2014; Type II secretion system: a magic beanstalk or a protein escalator. Biochim Biophys Acta 1843:1568–1577 [View Article][PubMed]
    [Google Scholar]
  53. Petersen T. N., Brunak S., von Heijne G., Nielsen H. 2011; SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786 [View Article][PubMed]
    [Google Scholar]
  54. Rabus R., Nordhaus R., Ludwig W., Widdel F. 1993; Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451[PubMed]
    [Google Scholar]
  55. Reardon P. N., Mueller K. T. 2013; Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens. J Biol Chem 288:29260–29266 [View Article][PubMed]
    [Google Scholar]
  56. Reguera G., McCarthy K. D., Mehta T., Nicoll J. S., Tuominen M. T., Lovley D. R. 2005; Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101 [View Article][PubMed]
    [Google Scholar]
  57. Reguera G., Nevin K. P., Nicoll J. S., Covalla S. F., Woodard T. L., Lovley D. R. 2006; Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72:7345–7348 [View Article][PubMed]
    [Google Scholar]
  58. Rollefson J. B., Stephen C. S., Tien M., Bond D. R. 2011; Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J Bacteriol 193:1023–1033 [View Article][PubMed]
    [Google Scholar]
  59. Rotaru A.-E., Shrestha P. M., Liu F., Shrestha M., Shrestha D., Embree M., Zengler K., Wardman C., Nevin K. P., Lovley D. R. 2014; A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7:408–415 [View Article]
    [Google Scholar]
  60. Rotaru A.-E., Woodard T. L., Nevin K. P., Lovley D. R. 2015; Link between capacity for current production and syntrophic growth in Geobacter species. Front Microbiol 6: [View Article][PubMed]
    [Google Scholar]
  61. Sela I., Ashkenazy H., Katoh K., Pupko T. 2015; GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 43:W7–W14 [View Article][PubMed]
    [Google Scholar]
  62. Shrestha P. M., Rotaru A. E., Aklujkar M., Liu F., Shrestha M., Summers Z. M., Malvankar N., Flores D. C., Lovley D. R. 2013; Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep 5:904–910 [View Article][PubMed]
    [Google Scholar]
  63. Smith J. A., Nevin K. P., Lovley D. R. 2015; Syntrophic growth via quinone-mediated interspecies electron transfer. Front Microbiol 6:121 [View Article][PubMed]
    [Google Scholar]
  64. Summers Z. M., Fogarty H. E., Leang C., Franks A. E., Malvankar N. S., Lovley D. R. 2010; Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415 [View Article][PubMed]
    [Google Scholar]
  65. Sun H., Zusman D. R., Shi W. 2000; Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 10:1143–1146 [View Article][PubMed]
    [Google Scholar]
  66. Szabó Z., Stahl A. O., Albers S., Kissinger J. C., Driessen A. J., Pohlschröder M. 2007; Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J Bacteriol 189:772–778 [View Article][PubMed]
    [Google Scholar]
  67. Tajima F. 1989; Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595[PubMed]
    [Google Scholar]
  68. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  69. Tan Y., Adhikari R. Y., Malvankar N. S., Ward J. E., Nevin K. P., Woodard T. L., Smith J. A., Snoeyenbos-West O. L., Franks A. E. et al. 2016; The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter. Front Microbiol 7:980
    [Google Scholar]
  70. Tomich M., Planet P. J., Figurski D. H. 2007; The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5:363–375 [View Article][PubMed]
    [Google Scholar]
  71. Tusnády G. E., Simon I. 2001; The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850 [View Article][PubMed]
    [Google Scholar]
  72. Vargas M., Malvankar N. S., Tremblay P. L., Leang C., Smith J. A., Patel P., Snoeyenbos-West O., Synoeyenbos-West O., Nevin K. P., Lovley D. R. 2013; Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4:e0010500113 [View Article][PubMed]
    [Google Scholar]
  73. Veazey J. P., Reguera G., Tessmer S. H. 2011; Electronic properties of conductive pili of the metal-reducing bacterium Geobacter sulfurreducens probed by scanning tunneling microscopy. Physical Review E 84: [View Article]
    [Google Scholar]
  74. Venkidusamy K., Megharaj M., Schroder U., Karouta F., Mohan S. V, Naidu R. 2015; Electron transport through electrically conductive nanofilaments in Rhodopseudomonas palustris strain RP2. RSC Adv. 5100790–100798
  75. Voordeckers J. W., Kim B. C., Izallalen M., Lovley D. R. 2010; Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. Appl Environ Microbiol 76: 2371–2375 [View Article][PubMed]
    [Google Scholar]
  76. Waksman G., Hultgren S. J. 2009; Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7:765–774 [View Article][PubMed]
    [Google Scholar]
  77. Wanger G., Gorby Y., El-Naggar M. Y., Yuzvinsky T. D., Schaudinn C., Gorur A., Sedghizadeh P. P. 2013; Electrically conductive bacterial nanowires in biphosphonate-related osteonecrosis of the jaw biofilms. Oral and Maxillofacial Path 115:71–78
    [Google Scholar]
  78. Yu N. Y., Wagner J. R., Laird M. R., Melli G., Rey S., Lo R., Dao P., Sahinalp S. C., Ester M. et al. 2010; PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615 [View Article][PubMed]
    [Google Scholar]
  79. Zapun A., Missiakas D., Raina S., Creighton T. E. 1995; Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34:5075–5089 [View Article][PubMed]
    [Google Scholar]
  80. Zhuang K., Izallalen M., Mouser P., Richter H., Risso C., Mahadevan R., Lovley D. R. 2011; Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316 [View Article][PubMed]
    [Google Scholar]
  81. Holmes, Dang, Walker, and Lovley, FigShare https://figshare.com/s/87e875d0c5c97c2e5498 2016
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000072
Loading
/content/journal/mgen/10.1099/mgen.0.000072
Loading

Data & Media loading...

Supplements

Loading data from figshare Loading data from figshare
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error