1887

Abstract

is an important human pathogen capable of causing serious infections. NADH oxidase, a factor necessary for infection, was previously identified as part of a signature-tagged mutagenesis screen of a clinical isolate, 0100993. The mutant, with a plasmid insertion disrupting the gene, was attenuated for virulence in a murine respiratory tract infection model. A complete refined deletion mutant was generated by allelic-replacement mutagenesis and found to be attenuated for virulence 10-fold in the murine respiratory tract infection model and at least 10-fold in a Mongolian gerbil otitis media infection model, confirming the importance of the NADH oxidase for both types of infection. NADH oxidase converts O to HO. If O is not fully reduced, it can form superoxide anion () and hydrogen peroxide (HO), both of which can be toxic to cells. Bacterial cell extracts from the allelic-replacement mutant were found to lack NADH oxidase activity and the mutant was unable to grow exponentially under conditions of vigorous aeration. In contrast, the mutant displayed normal growth characteristics under conditions of limited aeration. The gene was cloned and expressed in . The purified His-tagged NADH oxidase was shown to oxidize NADH with a of 32 μM, but was unable to oxidize NADPH. Oxidation of NADH was independent of exogenous FAD or FMN.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-2-431
2001-02-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/2/1470431a.html?itemId=/content/journal/micro/10.1099/00221287-147-2-431&mimeType=html&fmt=ahah

References

  1. Abbe K., Takahashi-Abbe S., Schoen R. A., Wittenberger C. L. 1986; Role of NADH oxidase in the oxidative inactivation of Streptococcus salivarius fructosyltransferase. Infect Immun 54:233–238
    [Google Scholar]
  2. Ahmed S. A., Claiborne A. 1989; The streptococcal flavoprotein NADH oxidase. I. Evidence linking NADH oxidase and NADH peroxidase cysteinyl redox centers. J Biol Chem 264:19856–19863
    [Google Scholar]
  3. AlonsoDeVelasco E., Verheul A. F., Verhoef J., Snippe H. 1995; Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines. Microbiol Rev 59:591–603
    [Google Scholar]
  4. Auzat I., Le Bras G., Le Thomas I., Trombe M.-C., Garel J.-R. 1998; The NADH oxidase from Streptococcus pneumoniae. In ASM Conference on Streptococcal GeneticsVichy, France p. 68
    [Google Scholar]
  5. Auzat I., Chapuy-Regaud S., Le Bras G., Dos Santos D., Ogunniyi A. D., Le Thomas I., Garel J. R., Paton J. C., Trombe M. C. 1999; The NADH oxidase of Streptococcus pneumoniae: its involvement in competence and virulence. Mol Microbiol 34:1018–1028 [CrossRef]
    [Google Scholar]
  6. Avery O. T., MacLeod C. M., McCarty M. 1944; Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. J Exp Med 79:137–158 [CrossRef]
    [Google Scholar]
  7. Badway J. A., Karnovsky M. L. 1980; Active oxygen species and the function of phagocytes. Annu Rev Biochem 49:695–726 [CrossRef]
    [Google Scholar]
  8. Briles D. E., Tart R. C., Swiatlo E.8 other authors 1998; Pneumococcal diversity: considerations for new vaccine strategies with emphasis on pneumococcal surface protein A (PspA). Clin Microbiol Rev 11:645–657
    [Google Scholar]
  9. Bruyn G. A., Zegers B. J., van Furth R. 1992; Mechanisms of host defense against infection with Streptococcus pneumoniae. Clin Infect Dis 14:251–262 [CrossRef]
    [Google Scholar]
  10. Fridovich I. 1978; The biology of oxygen radicals. Science 201:875–880 [CrossRef]
    [Google Scholar]
  11. Gibson C. M., Mallett T. C., Claiborne A., Caparon M. G. 2000; Contribution of NADH oxidase to aerobic metabolism of Streptococcus pyogenes. J Bacteriol 182:448–455 [CrossRef]
    [Google Scholar]
  12. Havarstein L. S., Coomaraswamy G., Morrison D. A. 1995; An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci USA 92:11140–11144 [CrossRef]
    [Google Scholar]
  13. Higuchi M. 1984; The effect of oxygen on the growth and mannitol fermentation of Streptococcus mutans. J Gen Microbiol 130:1819–1826
    [Google Scholar]
  14. Higuchi M. 1992; Reduced nicotinamide adenine dinucleotide oxidase involvement in defense against oxygen toxicity of Streptococcus mutans. Oral Microbiol Immunol 7:309–314 [CrossRef]
    [Google Scholar]
  15. Higuchi M., Shimada M., Yamamoto Y., Hayashi T., Koga T., Kamio Y. 1993; Identification of two distinct NADH oxidases corresponding to H2O2-forming oxidase and H2O-forming oxidase induced in Streptococcus mutans. J Gen Microbiol 139:2343–2351 [CrossRef]
    [Google Scholar]
  16. Himmerlreich R., Hilbert H., Plagens H., Pirkl E., Li B. C., Herrmann R. 1996; Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24:4420–4449 [CrossRef]
    [Google Scholar]
  17. Hodgson E. K., Fridovich I. 1975; The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 14:5294–5299 [CrossRef]
    [Google Scholar]
  18. Kelly T., Dillard J. P., Yother J. 1994; Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect Immun 62:1813–1819
    [Google Scholar]
  19. Klomkes M., Altdorf R., Ohlenbusch H. D. 1985; Purification and properties of an FAD-containing NADH oxidase from Mycoplasma capricolum. Biol Chem Hoppe-Seyler 366:963–969 [CrossRef]
    [Google Scholar]
  20. Koike K., Kobayasi T., Ito S., Saitoh M. 1985; Purification and characterization of NADH oxidase from a strain of Leuconostoc mesenteroides. J Biochem 97:1279–1288
    [Google Scholar]
  21. Konings W. N., Otto R. 1983; Energy transduction and solute transport in streptococci. Antonie Leeuwenhoek 49:247–257 [CrossRef]
    [Google Scholar]
  22. Oliver C. N., Fulks R., Levine R. L., Fucci L., Rivett A. J., Roseman J. E., Stadtman E. R. 1984; Oxidative inactivation of key metabolic enzymes during aging. In Molecular Basis of Aging pp. 235–263Edited by Roy A. K., Chatterjee B. New York: Academic Press;
    [Google Scholar]
  23. Ottolenghi E., Hotchkiss R. D. 1962; Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. J Exp Med 116:491–519 [CrossRef]
    [Google Scholar]
  24. Paton J. C., Andrew P. W., Boulnois G. J., Mitchell T. J. 1993; Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu Rev Microbiol 47:89–115 [CrossRef]
    [Google Scholar]
  25. Pick E., Keisari Y. 1980; A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods 38:161–170 [CrossRef]
    [Google Scholar]
  26. Poolman B. 1993; Energy transduction in lactic acid bacteria. FEMS Microbiol Rev 12:125–148 [CrossRef]
    [Google Scholar]
  27. Ross R. P., Claiborne A. 1992; Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison with NADH peroxidase and the flavoprotein disulfide reductases. J Mol Biol 227:658–671 [CrossRef]
    [Google Scholar]
  28. Samuni A., Chevion M., Czapski G. 1981; Unusual copper-induced sensitization of the biological damage due to superoxide radicals. J Biol Chem 258:12632–12635
    [Google Scholar]
  29. Schmidt H. L., Stocklein W., Danzer J., Kirch P., Limbach B. 1986; Isolation and properties of an H2O-forming NADH oxidase from Streptococcus faecalis. Eur J Biochem 156:149–155 [CrossRef]
    [Google Scholar]
  30. Shinar E., Navok T., Chevion M. 1983; The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper. J Biol Chem 258:14778–14783
    [Google Scholar]
  31. Spellerberg B., Cundell D. R., Sandros J., Pearce B. J., Idanpaan-Heikkila I., Rosenow C., Masure H. R. 1996; Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol Microbiol 19:803–813 [CrossRef]
    [Google Scholar]
  32. Stanton T. B., Rosey E. L., Kennedy M. J., Jensen N. S., Bosworth B. T. 1999; Isolation, oxygen sensitivity, and virulence of NADH oxidase mutants of the anaerobic spirochete Brachyspira (Serpulina) hyodysenteriae, etiologic agent of swine dysentery. Appl Environ Microbiol 65:5028–5034
    [Google Scholar]
  33. Stehle T., Ahmed S. A., Claiborne A., Schulz G. E. 1991; Structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2·16 Å resolution. J Mol Biol 221:1325–1344
    [Google Scholar]
  34. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969 [CrossRef]
    [Google Scholar]
  35. Thomas E. L., Pera K. A. 1983; Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. J Bacteriol 154:1236–1244
    [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  37. Tinoco I. Jr, Borer P. N., Dengler B., Levin M. D., Uhlenbeck O. C., Crothers D. M., Bralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nat New Biol 246:40–41 [CrossRef]
    [Google Scholar]
  38. Watson D. A., Musher D. M. 1990; Interruption of capsule production in Streptococcus pneumoniae serotype 3 by insertion of transposon Tn916. Infect Immun 58:3135–3138
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-2-431
Loading
/content/journal/micro/10.1099/00221287-147-2-431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error