1887

Abstract

To better understand the contribution of micro-organisms to the primary production in the deep-sea gutless tubeworm sp., the 16S-rDNA-based phylogenetic data would be complemented by knowledge of the genes that encode the enzymes relevant to chemoautotrophic carbon fixation, such as D-ribulose 1,5-bisphosphate carboxylase–oxygenase (RuBisCO; EC 4.1.1.39). To phylogenetically characterize the autotrophic endosymbiosis within the trophosome of the tubeworm sp., bulk trophosomal DNA was extracted and analysed based on the 16S-rRNA- and RuBisCO-encoding genes. The 16S-rRNA- and RuBisCO-encoding genes were amplified by PCR, cloned and sequenced. For the 16S rDNA, a total of 50 clones were randomly selected and analysed directly by sequencing. Only one operational taxonomic unit resulted from the 16S rDNA sequence analysis. This may indicate the occurrence of one endosymbiotic bacterial species within the trophosome of the sp. used in this study. Phylogenetic analysis of the 16S rDNA showed that the sp. endosymbiont was closely related to the genus , a member of the α-. For the RuBisCO genes, only the form II gene () was amplified by PCR. A total of 50 clones were sequenced, and these were grouped into two operational RuBisCO units (ORUs) based on their deduced amino acid sequences. The ORUs showed high amino acid identities with those recorded from the ambient sediment bacteria. To confirm the results of sequence analysis, the localization of the symbiont-specific 16S rRNA and sequences in the sp. trophosome was visualized by hybridization (ISH), using specific probes. Two types of cells, coccoid and filamentous, were observed at the peripheries of the trophosome lobules. Both the symbiont-specific 16S rDNA and probes hybridized at the same sites coincident with the location of the coccoid cells, whereas the filamentous cells showed no -specific signals. The RuBisCO form I gene () was neither amplified by PCR nor detected by ISH. This is the first demonstration of chemoautotrophic symbiosis in the deep-sea gutless tubeworm, based on sequence data and localization of both the 16S-rRNA- and RuBisCO-encoding genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-148-6-1947
2002-06-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/148/6/1481947a.html?itemId=/content/journal/micro/10.1099/00221287-148-6-1947&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  3. Amann R. I., Ludwig W., Schleifer K.-H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  4. Bright M., Keckeis H., Fisher C. R. 2000; An autoradiographic examination of carbon fixation, transfer and utilization in the Riftia pachyptila symbiosis. Mar Biol 136:621–632 [CrossRef]
    [Google Scholar]
  5. Cary S. C., Warren W., Anderson E., Giovannoni S. J. 1993; Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol Mar Biol Biotechnol 2:51–62
    [Google Scholar]
  6. Cavanaugh C. M. 1983; Symbiotic chemoautotrophic bacteria in marine invertebrates from sulfide-rich habitats. Nature 302:58 [CrossRef]
    [Google Scholar]
  7. Cavanaugh C. M. 1985; Symbiosis of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediment. Biol Soc Wash Bull 6:373–388
    [Google Scholar]
  8. Cavanaugh C. M., Gardiner S. L., Jones M. L., Jannasch H. W., Waterbury J. B. 1981; Prokaryotic cells in the hydrothermal vent tube worm, Riftia pachyptila : possible chemoautotrophic symbionts. Science 213:340–342 [CrossRef]
    [Google Scholar]
  9. Dealtry G., Rickwood D. (editors) 1992 Cell Biology Labfax p 254 Oxford: BIOS Scientific;
    [Google Scholar]
  10. De Burgh M. E., Juniper S. K., Singla C. L. 1989; Bacterial symbiosis in Northeast Pacific Vestimentifera: a TEM study. Mar Biol 101:97–105 [CrossRef]
    [Google Scholar]
  11. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  12. Delwiche C. F., Palmer J. D. 1996; Rampant horizontal transfer and duplication of RuBisCO genes in eubacteria and plastids. Mol Biol Evol 13:873–882 [CrossRef]
    [Google Scholar]
  13. Di Meo C. A., Wilbur A. E., Holben W. E., Feldman R. A., Vrijenhoek R. C., Cary S. C. 2000; Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl Environ Microbiol 66:651–658 [CrossRef]
    [Google Scholar]
  14. Distel D. L., Cavanaugh C. M. 1994; Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938
    [Google Scholar]
  15. Distel D. L., Felbeck H., Cavanaugh C. M. 1994; Evidence for phylogenetic congruence among sulfur-oxidizing chemoautotrophic bacterial endosymbionts and their bivalvia hosts. J Mol Evol 38:533–542 [CrossRef]
    [Google Scholar]
  16. Distel D. L., Lee H. K., Cavanaugh C. M. 1995; Intracellular coexistence of methano- and thioautotrophic bacteria in a hydrothermal vent mussel. Proc Natl Acad Sci U S A 92:9598–9602 [CrossRef]
    [Google Scholar]
  17. Elsaied H., Naganuma T. 2001; Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 67:1751–1765 [CrossRef]
    [Google Scholar]
  18. Felbeck H. 1981; Chemoautotrophic potential of the hydrothermal vent tubeworm Riftia pachyptila Jones (vestimentiferan. Science 213:336–338 [CrossRef]
    [Google Scholar]
  19. Felbeck H., Childress J. J. 1988; Riftia pachyptila : a highly integrated symbiosis. Oceanol Acta 8:131–138
    [Google Scholar]
  20. Felbeck H., Childress J. H., Somero G. N. 1981; Calvin–Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293:291–293 [CrossRef]
    [Google Scholar]
  21. Feldman R. A., Black M. B., Cary C. S., Lutz R. A., Vrijenhoek R. C. 1997; Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol Mar Biol Biotechnol 6:268–277
    [Google Scholar]
  22. Felsenstein J. 1989; phylip – Phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  23. Fisher C. R. 1990; Chemoautotrophic and methanotrophic symbiosis in marine invertebrates. Rev Aquat Sci 2:399–436
    [Google Scholar]
  24. Fujiwara Y., Kato C., Masui N., Fujikura K., Kojima S. 2001; Dual symbiosis in the cold-seep thyasirid clam Maorithyas hadalis from the hadal zone in the Japan Trench, western Pacific. Mar Ecolog Prog Ser 214:151–159 [CrossRef]
    [Google Scholar]
  25. Godon J. J., Zumstein E., Dabert P., Habouzit F., Molletta R. 1997; Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813
    [Google Scholar]
  26. Hand S. C. 1987; Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate–sulfur bacteria symbiosis. Biol Bull 173:260–276 [CrossRef]
    [Google Scholar]
  27. Haygood M. G. 1996; The potential role of functional differences between RuBisCO forms in governing expression in chemoautotrophic symbiosis. Limnol Oceanogr 41:370–371 [CrossRef]
    [Google Scholar]
  28. Hernandez J. M., Baker S. H., Lorbach S. C., Shively J. M., Tabita F. R. 1996; Deduced amino acid sequence, functional expression, and unique enzymatic properties of the form I and form II ribulose bisphosphate carboxylase/oxygenase from the chemoautotrophic bacterium Thiobacillus denitrificans . J Bacteriol 178:347–356
    [Google Scholar]
  29. Imhoff J. 1989; Genus Rhodobacter . In Bergey’s Manual of Systematic Bacteriology pp 1668–1672 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  30. Julian D., Gail F., Wood E., Arp A., Fisher C. 1999; Roots as a site of hydrogen sulfide uptake in the hydrocarbon seep vestimentiferan Lamellibrachia sp. J Exper Biol 202:2245–2257
    [Google Scholar]
  31. Kellogg E. A., Juliano N. D. 1997; The structure and function of RuBisCO and their implications for systematic studies. Am J Bot 84:413–428 [CrossRef]
    [Google Scholar]
  32. Miziorko H. M., Lorimer G. H. 1983; Ribulose-1,5-bisphosphate carboxylase–oxygenase. Annu Rev Biochem 52:507–535 [CrossRef]
    [Google Scholar]
  33. Naganuma T. 1998; A hypothetical microbial consortium that stabilizes oxygen-gradient in chemosynthetic microenvironment. Supramolec Sci 5:439–443 [CrossRef]
    [Google Scholar]
  34. Naganuma T., Naka J., Okayama Y., Minami A., Horikoshi K. 1997a; Morphological diversity of the microbial population in a vestimentiferan tubeworm. J Mar Biotechnol 5:199–123
    [Google Scholar]
  35. Naganuma T., Kato C., Hirayama H., Moriyama N., Hashimoto J., Horikoshi K. 1997b; Intracellular occurrence of ϵ- Proteobacteria 16S rDNA sequences in the vestimentiferan trophosome. J Oceanogr 53:193–197
    [Google Scholar]
  36. Nargang F., McIntosh L., Somerville C. 1984; Nucleotide sequence of the ribulose bisphosphate carboxylase gene from Rhodospirillum rubrum. Mol Gen Genet. 193220–224 [CrossRef]
  37. Newman J., Gutteridge S. 1993; The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated quaternary complex at 2·2-Å resolution. J Biol Chem 268:25876–25886
    [Google Scholar]
  38. Olsen G. J., Larsen N., Woese C. R. 1991; The ribosomal RNA database project. Nucleic Acids Res 19 Suppl., 2017–2021 [CrossRef]
    [Google Scholar]
  39. Page R. D. M. 1996; treeview: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  40. Penner J. L. 1988; The genus Campylobacter : a decade of progress. Clin Microbiol Rev 1:157–172
    [Google Scholar]
  41. Robinson J., Cavanaugh C. M. 1995; Expression of form I and form II RuBisCO in chemoautotrophic symbiosis: implications for the interpretation of stable carbon isotope values. Limnol Oceanogr 40:1496–1502 [CrossRef]
    [Google Scholar]
  42. Robinson J. J., Stein J. L., Cavanaugh C. M. 1998; Cloning and sequencing of a form II ribulose-1,5-bisphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila . J Bacteriol 180:1596–1599
    [Google Scholar]
  43. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  44. Sakai H., Gamo T., Endow K. 7 other authors 1987; Geochemical study of the bathyal seep communities at the Hatsushima site, Sagami bay, Central Japan. Geochem J 21:227–236 [CrossRef]
    [Google Scholar]
  45. Schneider G., Lindqvist Y., Lundqvist T. 1990; Crystallographic refinement and structure of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum at 1·7 Å resolution. J Mol Biol 211:989–1008 [CrossRef]
    [Google Scholar]
  46. Simbert R. M. 1984; Genus Campylobacter . In Bergey’s Manual of Systematic Bacteriology pp 111–118 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  47. Stahl D., Lane D., Olsen G., Pace N. 1984; Analysis of hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:409–411 [CrossRef]
    [Google Scholar]
  48. Stein J. L., Felbeck H. 1993; Kinetic and physical properties of a recombinant RuBisCO from a chemoautotrophic endosymbiont. Mol Mar Biol Biotechnol 2:280–290
    [Google Scholar]
  49. Stein J. L., Haygood M., Felbeck H. 1990; Nucleotide sequence and expression of a deep-sea ribulose-1,5-bisphosphate carboxylase gene cloned from a chemoautotrophic bacterial endosymbiont. Proc Natl Acad Sci U S A 87:8850–8854 [CrossRef]
    [Google Scholar]
  50. Tabita F. R. 1988; Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52:155–189
    [Google Scholar]
  51. Tabita F. R. 1995; The biochemistry and metabolic regulation of carbon metabolism and CO2 fixation in purple bacteria. In Anoxygenic Photosynthetic Bacteria pp 885–914 Edited by Blankenship R. E., Madigan M. T., Bauer C. E. Dordrecht: Kluwer;
    [Google Scholar]
  52. Thompson J. D., Higgins D. G., Gibson T. J. 1989; clustal w: Improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  53. Watson G. M., Tabita F. R. 1997; Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22 [CrossRef]
    [Google Scholar]
  54. Watson G. M., Yu J. P., Tabita F. R. 1999; Unusual ribulose 1,5-bisphosphate carboxylase/oxygenase of anoxic Archaea. J Bacteriol 181:1569–1575
    [Google Scholar]
  55. Zarda B., Amann R., Wallner G., Schleifer K.-H. 1991; Identification of single bacterial cells using digoxigenin-labelled, rRNA-targeted oligonucleotides. J Gen Microbiol 137:2823–2830 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-148-6-1947
Loading
/content/journal/micro/10.1099/00221287-148-6-1947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error