1887

Abstract

Signal transduction pathways mediated by mitogen-activated protein kinases (MAPKs) play crucial roles in eukaryotic cells. In the pathogenic fungus the HOG MAPK pathway regulates the response to external stresses (osmotic and oxidative among others) and is involved in morphogenesis and virulence. We show here that the lack of the Hog1 MAPK increases the sensitivity of this fungus to inhibitors of the respiratory chain. mutants also show an enhanced basal respiratory rate compared to parental strains, and higher levels of intracellular reactive oxygen species despite an increased expression of detoxifying enzymes. We also demonstrate that although oxidative phosphorylation is essentially unaffected, mutants have an altered mitochondrial membrane potential. Data indicate that -defective mutants are more dependent on mitochondrial ATP synthesis, probably due to an increased cellular ATP demand. Our results therefore link a MAPK pathway with respiratory metabolism in pathogenic fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.023309-0
2009-02-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/2/413.html?itemId=/content/journal/micro/10.1099/mic.0.023309-0&mimeType=html&fmt=ahah

References

  1. Alarco A. M., Raymond M. 1999; The bZip transcription factor Cap1p is involved in multidrug resistance and oxidative stress response in Candida albicans . J Bacteriol 181:700–708
    [Google Scholar]
  2. Alonso-Monge R., Navarro-García F., Molero G., Diez-Orejas R., Gustin M., Pla J., Sánchez M., Nombela C. 1999; Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans . J Bacteriol 181:3058–3068
    [Google Scholar]
  3. Alonso-Monge R., Navarro-García F., Román E., Negredo A. I., Eisman B., Nombela C., Pla J. 2003; The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans . Eukaryot Cell 2:351–361
    [Google Scholar]
  4. Alonso-Monge R., Román E., Nombela C., Pla J. 2006; The MAP kinase signal transduction network in Candida albicans . Microbiology 152:905–912
    [Google Scholar]
  5. Aoki S., Ito-Kuwa S., Nakamura K., Nakamura Y., Vidotto V., Takeo K. 2002; Chemiluminescence of superoxide generated by Candida albicans : differential effects of the superoxide generator paraquat on a wild-type strain and a respiratory mutant. Med Mycol 40:13–19
    [Google Scholar]
  6. Arana D. M., Nombela C., Alonso-Monge R., Pla J. 2005; The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans . Microbiology 151:1033–1049
    [Google Scholar]
  7. Arana D. M., Alonso-Monge R., Du C., Calderone R., Pla J. 2007; Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans . Cell Microbiol 9:1647–1659
    [Google Scholar]
  8. Brun S., Aubry C., Lima O., Filmon R., Bergès T., Chabasse D., Bouchara J. P. 2003; Relationships between respiration and susceptibility to azole antifungals in Candida glabrata . Antimicrob Agents Chemother 47:847–853
    [Google Scholar]
  9. Calderone R. A., Gow N. A. 2002; Host recognition by Candida species. In Candida and Candidiosis Edited by Calderone R. A. Washington DC: American Society for Microbiology;
    [Google Scholar]
  10. Chance B., Sies H., Boveris A. 1979; Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605
    [Google Scholar]
  11. Enjalbert B., Nantel A., Whiteway M. 2003; Stress-induced gene expression in Candida albicans : absence of a general stress response. Mol Biol Cell 14:1460–1467
    [Google Scholar]
  12. Enjalbert B., Smith D. A., Cornell M. J., Alam I., Nicholls S., Brown A. J., Quinn J. 2006; Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans . Mol Biol Cell 17:1018–1032
    [Google Scholar]
  13. Fonzi W. A., Irwin M. Y. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics 134:717–728
    [Google Scholar]
  14. Helmerhorst E. J., Troxler R. F., Oppenheim F. G. 2001; The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A 98:14637–14642
    [Google Scholar]
  15. Helmerhorst E. J., Murphy M. P., Troxler R. F., Oppenheim F. G. 2002; Characterization of the mitochondrial respiratory pathways in Candida albicans . Biochim Biophys Acta 155673–80
    [Google Scholar]
  16. Helmerhorst E. J., Stan M., Murphy M. P., Sherman F., Oppenheim F. G. 2005; The concomitant expression and availability of conventional and alternative, cyanide-insensitive, respiratory pathways in Candida albicans . Mitochondrion 5:200–211
    [Google Scholar]
  17. Hohmann S. 2002; Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372
    [Google Scholar]
  18. Huh W. K., Kang S. O. 1999; Molecular cloning and functional expression of alternative oxidase from Candida albicans . J Bacteriol 181:4098–4102
    [Google Scholar]
  19. Huh W. K., Kang S. O. 2001; Characterization of the gene family encoding alternative oxidase from Candida albicans . Biochem J 356:595–604
    [Google Scholar]
  20. Huh W. K., Kim S. T., Yang K. S., Seok Y. J., Hah Y. C., Kang S. O. 1994; Characterisation of d-arabinono-1,4-lactone oxidase from Candida albicans ATCC 10231. Eur J Biochem 225:1073–1079
    [Google Scholar]
  21. Kerscher S. J. 2000; Diversity and origin of alternative NADH : ubiquinone oxidoreductases. Biochim Biophys Acta 1459274–283
    [Google Scholar]
  22. Martín H., Arroyo J., Sánchez M., Molina M., Nombela C. 1993; Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 °C. Mol Gen Genet 241:177–184
    [Google Scholar]
  23. Martín H., Rodriguez-Pachon J. M., Ruiz C., Nombela C., Molina M. 2000; Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae . J Biol Chem 275:1511–1519
    [Google Scholar]
  24. Navarro-García F., Sanchez M., Pla J., Nombela C. 1995; Functional characterization of the MKC1 gene of Candida albicans , which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15:2197–2206
    [Google Scholar]
  25. Navarro-Garcia F., Eisman B., Fiuza S. M., Nombela C., Pla J. 2005; The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans . Microbiology 151:2737–2749
    [Google Scholar]
  26. Odds F. C. 1988 Candida and Candidosis London: Baillière Tindall;
  27. Qi M., Elion E. A. 2005; MAP kinase pathways. J Cell Sci 118:3569–3572
    [Google Scholar]
  28. Pina-Vaz C., Sansonetty F., Rodrigues A. G., Costa-Oliveira S., Tavares C., Martinez-de-Oliveira J. 2001; Cytometric approach for a rapid evaluation of susceptibility of Candida strains to antifungals. Clin Microbiol Infect 7:609–618
    [Google Scholar]
  29. Román E., Nombela C., Pla J. 2005; The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans . Mol Cell Biol 25:10611–10627
    [Google Scholar]
  30. Ruy F., Vercesi A. E., Kowaltowski A. J. 2006; Inhibition of specific electron transport pathways leads to oxidative stress and decreased Candida albicans proliferation. J Bioenerg Biomembr 38:129–135
    [Google Scholar]
  31. San José C., Alonso-Monge R., Pérez-Díaz R. M., Pla J., Nombela C. 1996; The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans . J Bacteriol 178:5850–5852
    [Google Scholar]
  32. Singh P., Chauhan N., Ghosh A., Dixon F., Calderone R. 2004; SKN7 of Candida albicans : mutant construction and phenotype analysis. Infect Immun 72:2390–2394
    [Google Scholar]
  33. Smith D. A., Nicholls S., Morgan B. A., Brown A. J., Quinn J. 2004; A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans . Mol Biol Cell 15:4179–4190
    [Google Scholar]
  34. Turrens J. F., Alexandre A., Lehninger A. L. 1985; Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237:408–414
    [Google Scholar]
  35. Turton J. A., Andrews C. M., Havard A. C., Robinson S., York M., Williams T. C., Gibson F. M. 2002; Haemotoxicity of thiamphenicol in the BALB/c mouse and Wistar Hanover rat. Food Chem Toxicol 40:1849–1861
    [Google Scholar]
  36. Veerman E. C., Nazmi K., Van't Hof W., Bolscher J. G., Den Hertog A. L., Nieuw Amerongen A. V. 2004; Reactive oxygen species play no role in the candidacidal activity of the salivary antimicrobial peptide histatin 5. Biochem J 381:447–452
    [Google Scholar]
  37. Wagner A. M., Moore A. L. 1997; Structure and function of the plant alternative oxidase: its putative role in the oxygen defence mechanism. Biosci Rep 17:319–333
    [Google Scholar]
  38. Yunis A. A. 1989; Chloramphenicol toxicity: 25 years of research. Am J Med 87:44N–48N
    [Google Scholar]
  39. Zhang X., De Micheli M., Coleman S. T., Sanglard D., Moye-Rowley W. S. 2000; Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol Microbiol 36:618–629
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.023309-0
Loading
/content/journal/micro/10.1099/mic.0.023309-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error