1887

Abstract

The clustered regularly interspaced short palindromic repeat (CRISPR) confers adaptive immunity against phages via sequence fragments (spacers) derived from mobile genetic elements (MGEs), thus serving as a memory of past host–phage co-evolution. To understand co-evolutionary dynamics in natural settings, we examined CRISPR diversity in 94 isolates of from a small eutrophic pond. Fifty-two isolates possessed the CRISPR and were classified into 22 different CRISPR-related genotypes, suggesting stable coexistence of multiple genotypes with different phage susceptibility. Seven CRISPR-related genotypes showed variation of spacers at the leader-end of the CRISPR, indicating active spacer addition from MGEs. An abundant phylotype (based on the internal transcribed spacer of the rRNA gene) contained different CRISPR spacer genotypes with the same CRISPR-associated gene. These data suggest that selective phage infection and possibly plasmid transfer may contribute to maintenance of multiple genotypes of and that rapid co-evolution within a host–phage combination may be driven by increased contact frequency. Forty-two isolates lacked detectable CRISPR loci. Relative abundance of the CRISPR-lacking genotypes in the population suggests that CRISPR loss may be selected for enhanced genetic exchange.

Funding
This study was supported by the:
  • Grant-in-Aid for Science Research (Award 20310045)
  • JSPS for Young Scientists (Award 224469)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.073494-0
2014-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/903.html?itemId=/content/journal/micro/10.1099/mic.0.073494-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Andersson A. F., Banfield J. F. ( 2008). Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:1047–1050 [View Article][PubMed]
    [Google Scholar]
  3. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P. ( 2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712 [View Article][PubMed]
    [Google Scholar]
  4. Bergh O., Børsheim K. Y., Bratbak G., Heldal M. ( 1989). High abundance of viruses found in aquatic environments. Nature 340:467–468 [View Article][PubMed]
    [Google Scholar]
  5. Bolch C. J. S., Blackburn S., Neilan B. A., Grewe P. M. ( 1996). Genetic characterization of strains of cyanobacteria using PCR-RFLP of the cpcBA intergenic spacer and flanking regions. J Phycol 32:445–451 [View Article]
    [Google Scholar]
  6. Boyer S. L., Flechtner V. R., Johansen J. R. ( 2001). Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069 [View Article][PubMed]
    [Google Scholar]
  7. Briand E., Escoffier N., Straub C., Sabart M., Quiblier C., Humbert J. F. ( 2009). Spatiotemporal changes in the genetic diversity of a bloom-forming Microcystis aeruginosa (cyanobacteria) population. ISME J 3:419–429 [View Article][PubMed]
    [Google Scholar]
  8. Brouns S. J., Jore M. M., Lundgren M., Westra E. R., Slijkhuis R. J., Snijders A. P., Dickman M. J., Makarova K. S., Koonin E. V., van der Oost J. ( 2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964 [View Article][PubMed]
    [Google Scholar]
  9. Buckling A., Rainey P. B. ( 2002). Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci 269:931–936 [View Article][PubMed]
    [Google Scholar]
  10. Clement M., Posada D., Crandall K. A. ( 2000). tcs: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659 [View Article][PubMed]
    [Google Scholar]
  11. Deveau H., Barrangou R., Garneau J. E., Labonté J., Fremaux C., Boyaval P., Romero D. A., Horvath P., Moineau S. ( 2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus . J Bacteriol 190:1390–1400 [View Article][PubMed]
    [Google Scholar]
  12. Edgar R. C. ( 2004). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  13. Garneau J. E., Dupuis M. E., Villion M., Romero D. A., Barrangou R., Boyaval P., Fremaux C., Horvath P., Magadán A. H., Moineau S. ( 2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71 [View Article][PubMed]
    [Google Scholar]
  14. Grissa I., Vergnaud G., Pourcel C. ( 2008). CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 36:Web ServerW145–148 [View Article][PubMed]
    [Google Scholar]
  15. Heidelberg J. F., Nelson W. C., Schoenfeld T., Bhaya D. ( 2009). Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS ONE 4:e4169 [View Article][PubMed]
    [Google Scholar]
  16. Held N. L., Whitaker R. J. ( 2009). Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol 11:457–466 [View Article][PubMed]
    [Google Scholar]
  17. Held N. L., Herrera A., Cadillo-Quiroz H., Whitaker R. J. ( 2010). CRISPR associated diversity within a population of Sulfolobus islandicus . PLoS ONE 5:e12988 [View Article][PubMed]
    [Google Scholar]
  18. Janse I., Kardinaal W. E., Meima M., Fastner J., Visser P. M., Zwart G. ( 2004). Toxic and nontoxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70:3979–3987 [View Article][PubMed]
    [Google Scholar]
  19. Jansen R., Embden J. D., Gaastra W., Schouls L. M. ( 2002). Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575 [View Article][PubMed]
    [Google Scholar]
  20. Jorth P., Whiteley M. ( 2012). An evolutionary link between natural transformation and CRISPR adaptive immunity. MBio 3:e00309–e00312 [View Article][PubMed]
    [Google Scholar]
  21. Kasai F., Kawachi M., Erata M., Watanabe M. M. (editors) ( 2004). NIES-Collection List of Strains, 7th edn.. Tsukuba: National Institute for Environmental Studies;
    [Google Scholar]
  22. Kimura S., Yoshida T., Hosoda N., Honda T., Kuno S., Kamiji R., Hashimoto R., Sako Y. ( 2012). Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond. Appl Environ Microbiol 78:5805–5811 [View Article][PubMed]
    [Google Scholar]
  23. Kimura S., Sako Y., Yoshida T. ( 2013). Rapid Microcystis cyanophage gene diversification revealed by long- and short-term genetic analyses of the tail sheath gene in a natural pond. Appl Environ Microbiol 79:2789–2795 [View Article][PubMed]
    [Google Scholar]
  24. Kunin V., He S., Warnecke F., Peterson S. B., Garcia Martin H., Haynes M., Ivanova N., Blackall L. L., Breitbart M. & other authors ( 2008). A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res 18:293–297 [View Article][PubMed]
    [Google Scholar]
  25. Kuno S., Yoshida T., Kaneko T., Sako Y. ( 2012). Intricate interactions between the bloom-forming cyanobacterium Microcystis aeruginosa and foreign genetic elements, revealed by diversified clustered regularly interspaced short palindromic repeat (CRISPR) signatures. Appl Environ Microbiol 78:5353–5360 [View Article][PubMed]
    [Google Scholar]
  26. Makarova K. S., Haft D. H., Barrangou R., Brouns S. J., Charpentier E., Horvath P., Moineau S., Mojica F. J., Wolf Y. I. & other authors ( 2011a). Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477 [View Article][PubMed]
    [Google Scholar]
  27. Makarova K. S., Wolf Y. I., Snir S., Koonin E. V. ( 2011b). Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. J Bacteriol 193:6039–6056 [View Article][PubMed]
    [Google Scholar]
  28. Marraffini L. A., Sontheimer E. J. ( 2008). CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845 [View Article][PubMed]
    [Google Scholar]
  29. Marraffini L. A., Sontheimer E. J. ( 2010). CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190 [View Article][PubMed]
    [Google Scholar]
  30. Marston M. F., Pierciey F. J. Jr, Shepard A., Gearin G., Qi J., Yandava C., Schuster S. C., Henn M. R., Martiny J. B. ( 2012). Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci U S A 109:4544–4549 [View Article][PubMed]
    [Google Scholar]
  31. Otsuka S., Suda S., Li R., Watanabe M., Oyaizu H., Matsumoto S., Watanabe M. M. ( 1999). Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequence. FEMS Microbiol Lett 172:15–21 [View Article][PubMed]
    [Google Scholar]
  32. Palmer K. L., Gilmore M. S. ( 2010). Multidrug-resistant enterococci lack CRISPR-cas. MBio 1:e00227–e00210 [View Article][PubMed]
    [Google Scholar]
  33. Paterson S., Vogwill T., Buckling A., Benmayor R., Spiers A. J., Thomson N. R., Quail M., Smith F., Walker D. & other authors ( 2010). Antagonistic coevolution accelerates molecular evolution. Nature 464:275–278 [View Article][PubMed]
    [Google Scholar]
  34. Rodriguez-Valera F., Martin-Cuadrado A. B., Rodriguez-Brito B., Pasić L., Thingstad T. F., Rohwer F., Mira A. ( 2009). Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836 [View Article][PubMed]
    [Google Scholar]
  35. Sabart M., Pobel D., Latour D., Robin J., Salençon M. J., Humbert J. F. ( 2009). Spatiotemporal changes in the genetic diversity in French bloom-forming populations of the toxic cyanobacterium, Microcystis aeruginosa . Environ Microbiol Rep 1:263–272 [View Article][PubMed]
    [Google Scholar]
  36. Sabart M., Pobel D., Briand E., Combourieu B., Salençon M. J., Humbert J. F., Latour D. ( 2010). Spatiotemporal variations in microcystin concentrations and in the proportions of microcystin-producing cells in several Microcystis aeruginosa populations. Appl Environ Microbiol 76:4750–4759 [View Article][PubMed]
    [Google Scholar]
  37. Schwabe W., Weihe A., Börner T., Henning M., Kohl J.-G. ( 1988). Plasmids in toxic and nontoxic strains of the cyanobacterium Microcystis aeruginosa . Curr Microbiol 17:133–137 [View Article]
    [Google Scholar]
  38. Smith J. K., Parry J. D., Day J. G., Smith R. J. ( 1998). A PCR technique based on the Hip1 interspersed repetitive sequence distinguishes cyanobacterial species and strains. Microbiology 144:2791–2801 [View Article][PubMed]
    [Google Scholar]
  39. Steffen M. M., Li Z., Effler T. C., Hauser L. J., Boyer G. L., Wilhelm S. W. ( 2012). Comparative metagenomics of toxic freshwater cyanobacteria bloom communities on two continents. PLoS ONE 7:e44002 [View Article][PubMed]
    [Google Scholar]
  40. Suttle C. A. ( 2007). Marine viruses–major players in the global ecosystem. Nat Rev Microbiol 5:801–812 [View Article][PubMed]
    [Google Scholar]
  41. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  42. Tanabe Y., Watanabe M. M. ( 2011). Local expansion of a panmictic lineage of water bloom-forming cyanobacterium Microcystis aeruginosa . PLoS ONE 6:e17085 [View Article][PubMed]
    [Google Scholar]
  43. Tominaga H., Kawagishi S., Ashida H., Sawa Y., Ochiai H. ( 1995). Structure and replication of cryptic plasmids, pMA1 and pMA2, from a unicellular cyanobacterium, Microcystis aeruginosa . Biosci Biotechnol Biochem 59:1217–1220 [View Article][PubMed]
    [Google Scholar]
  44. Tyson G. W., Banfield J. F. ( 2008). Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10:200–207[PubMed]
    [Google Scholar]
  45. Vale P. F., Little T. J. ( 2010). CRISPR-mediated phage resistance and the ghost of coevolution past. Proc Biol Sci 277:2097–2103 [View Article][PubMed]
    [Google Scholar]
  46. Van Valen L. ( 1974). Molecular evolution as predicted by natural selection. J Mol Evol 3:89–101 [View Article][PubMed]
    [Google Scholar]
  47. Weinberger A. D., Sun C. L., Pluciński M. M., Denef V. J., Thomas B. C., Horvath P., Barrangou R., Gilmore M. S., Getz W. M., Banfield J. F. ( 2012). Persisting viral sequences shape microbial CRISPR-based immunity. PLOS Comput Biol 8:e1002475 [View Article][PubMed]
    [Google Scholar]
  48. Wiedenheft B., Sternberg S. H., Doudna J. A. ( 2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338 [View Article][PubMed]
    [Google Scholar]
  49. Wilson A. E., Sarnelle O., Neilan B. A., Salmon T. P., Gehringer M. M., Hay M. E. ( 2005). Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: implications for harmful algal blooms. Appl Environ Microbiol 71:6126–6133 [View Article][PubMed]
    [Google Scholar]
  50. Yoshida M., Yoshida T., Takashima Y., Kondo R., Hiroishi S. ( 2005). Genetic diversity of the toxic cyanobacterium Microcystis in Lake Mikata. Environ Toxicol 20:229–234 [View Article][PubMed]
    [Google Scholar]
  51. Yoshida M., Yoshida T., Satomi M., Takashima Y., Hosoda N., Hiroishi S. ( 2008a). Intra-specific phenotypic and genotypic variation in toxic cyanobacterial Microcystis strains. J Appl Microbiol 105:407–415 [View Article][PubMed]
    [Google Scholar]
  52. Yoshida T., Nagasaki K., Takashima Y., Shirai Y., Tomaru Y., Takao Y., Sakamoto S., Hiroishi S., Ogata H. ( 2008b). Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol 190:1762–1772 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.073494-0
Loading
/content/journal/micro/10.1099/mic.0.073494-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error