1887

Abstract

Genome-wide data mining indicated that six genes (, , , , and ) encoding putative transport proteins are involved in uptake of various aromatic compounds that are further degraded through the -ketoadipate, gentisate and resorcinol pathways in . The gentisate (GenK/NCgl2922) and vanillate (VanK/NCgl2302) transporters have been identified previously. In this study, physiological functions of the remaining four putative transporters as well as the vanillate transporter (VanK/NCgl2302) were examined by genetic disruption/complementation and uptake assays. Results indicated that encodes PcaK for 4-hydroxybenzoate and protocatechuate transport, and encodes VanK for vanillate transport. Genetic studies and uptake assays indicated that both / and are involved in benzoate transport in . When growth rates were compared for two benzoate transporter mutants, and , a high growth rate was observed for the mutant. Sequence alignments revealed that PcaK, VanK, BenK and GenK belong to the major facilitator superfamily (MFS). Modelling of secondary structures based on previously characterized MFS members revealed that NCgl1031, NCgl2302, NCgl2325 and NCgl2922 are typical 12 helix transmembrane proteins but NCgl2326 contains only 11 -helices. Thus the functionally identified NCgl2326 belongs to a novel type of benzoate transporters. Attempts to identify the phenotype of a mutant failed, so the function of remains unclear.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/002501-0
2007-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/3/857.html?itemId=/content/journal/micro/10.1099/mic.0.2006/002501-0&mimeType=html&fmt=ahah

References

  1. Abramson J., Smirnova I., Kasho V., Verner G., Kaback H. R., Iwata S. 2003; Structure and mechanism of the lactose permease of Escherichia coli . Science 301:610–615 [CrossRef]
    [Google Scholar]
  2. Amador E. J., Castro M., Correia A., Martin J. F. 1999; Structure and organization of the rrnD operon of Brevibacterium lactofermentum : analysis of 16S rRNA gene. Microbiology 145:915–924 [CrossRef]
    [Google Scholar]
  3. Collier L. S., Nichols N. N., Neidle E. L. 1997; benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J Bacteriol 179:5943–5946
    [Google Scholar]
  4. D'Argenio D. A., Segura A., Coco W. M., Ornston L. N., Bünz P. V. 1999; The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK. J Bacteriol 181:3505–3515
    [Google Scholar]
  5. Ditty J. L., Harwood C. S. 1999; Conserved cytoplasmic loops are important for both the transport and chemotaxis functions of PcaK, a protein from Pseudomonas putida with 12 membrane-spanning regions. J Bacteriol 181:5068–5074
    [Google Scholar]
  6. Dominguez H., Lindley N. D. 1996; Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol 62:3878–3880
    [Google Scholar]
  7. Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J. L., Cocaign-Bousquet M., Lindley N. D. 1998; Carbon flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102 [CrossRef]
    [Google Scholar]
  8. Eggeling L., Sahm H. 2003; New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli . Arch Microbiol 180:155–160 [CrossRef]
    [Google Scholar]
  9. Fariselli P., Finelli M., Rossi I., Amico M., Zauli A., Martelli P. G., Casadio R. 2005; trample: the transmembrane protein labeling environment. Nucleic Acids Res 33:W198–W201 [CrossRef]
    [Google Scholar]
  10. Feng J., Che Y., Milse J., Yin Y. J., Liu L., Ruckert C., Shen X. H., Qi S. W., Kalinowski J., Liu S. J. 2006; The gene ncgl2918 encodes a novel maleylpyruvate isomerase that needs mycothiol as cofactor and links mycothiol biosynthesis and gentisate assimilation in Corynebacterium glutamicum . J Biol Chem 281:10778–10785 [CrossRef]
    [Google Scholar]
  11. Gourdon P., Raherimandimby M., Dominguez H., Cocaign-Bousquet M., Lindley N. D. 2003; Osmotic stress, glucose transport capacity and consequences for glutamate overproduction in Corynebacterium glutamicum . J Biotechnol 104:77–85 [CrossRef]
    [Google Scholar]
  12. Harwood C. S., Gibson J. 1986; Uptake of benzoate by Rhodopseudomonas palustris grown aerobically in light. J Bacteriol 165:504–509
    [Google Scholar]
  13. Hirai T., Heymann J. A. W., Shi D., Sarker R., Maloney P. C., Subramaniam S. 2002; Three-dimensional structure of a bacterial oxalate transporter. Nat Struct Biol 9:597–600
    [Google Scholar]
  14. Huang Y., Lemieux M. J., Song J., Auer M., Wang D. N. 2003; Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli . Science 301:616–620 [CrossRef]
    [Google Scholar]
  15. Huang Y., Zhao K.-X., Shen X.-H., Chaudhry M. T., Jiang C.-Y., Liu S.-J. 2006; Genetic characterization of resorcinol catabolic pathway in Corynebacterium glutamicum . Appl Environ Microbiol 72:7238–7245 [CrossRef]
    [Google Scholar]
  16. Ikeda M., Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109 [CrossRef]
    [Google Scholar]
  17. Jakoby M., Ngouoto-Nkili C. E., Burkovski A. 1999; Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Techniques 13:437–441 [CrossRef]
    [Google Scholar]
  18. Jessen-Marshall A. E., Paul N. J., Brooker R. J. 1995; The conserved motif GXXX(D/E)(R/K)XG(X)(R/K)(R/K), in hydrophilic loop 2/3 of the lactose permease. J Biol Chem 270:16251–16257 [CrossRef]
    [Google Scholar]
  19. Jones D. T., Taylor W. R., Thornton J. M. 1994; A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 33:3038–3049 [CrossRef]
    [Google Scholar]
  20. Kalinowski J., Bathe B., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J., Gaigalat L. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 [CrossRef]
    [Google Scholar]
  21. Kennerknecht N., Sahm H., Yen M. R., Patek R., Saier M. H., Eggeling L. Jr 2002; Export of l-isoleucine from Corynebacterium glutamicum : a two-gene-encoded member of a new translocator family. J Bacteriol 184:3947–3956 [CrossRef]
    [Google Scholar]
  22. Kinoshita S., Udaka S., Shimono M. 1957; Amino acid fermentation. I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 3:193–205 [CrossRef]
    [Google Scholar]
  23. Konopka A. 1993; Isolation and characterization of a subsurface bacterium that degrades anilines and methylalanines. FEMS Microbiol Lett 111:93–99 [CrossRef]
    [Google Scholar]
  24. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. L. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [CrossRef]
    [Google Scholar]
  25. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132 [CrossRef]
    [Google Scholar]
  26. Leveau J. H. J., Zehnder A. J. B., Van der Meer J. R. 1998; The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134 (pJP4. J Bacteriol 180:2237–2243
    [Google Scholar]
  27. Merkens H., Beckers G., Wirtz A., Burkovski A. 2005; Vanillate metabolism in Corynebacterium glutamicum . Curr Microbiol 51:59–65 [CrossRef]
    [Google Scholar]
  28. Miguez C. B., Greer C. W., Ingram J. M., MacLeod R. A. 1995; Uptake of benzoic acid and chloro-substituted benzoic acids by Alcaligenes denitrificans BRI 3010 and BRI 6011. Appl Environ Microbiol 61:4152–4159
    [Google Scholar]
  29. Mitchell P. 1967; Translocations through natural membranes. Adv Enzymol 29:33–87
    [Google Scholar]
  30. Nichols N. N., Harwood C. S. 1995; Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida β -ketoadipate pathway. J Bacteriol 177:7033–7040
    [Google Scholar]
  31. Nichols N. N., Harwood C. S. 1997; PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida . J Bacteriol 179:5056–5061
    [Google Scholar]
  32. Pao S. S., Paulsen I. T., Saier M. H. Jr 1998; Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34
    [Google Scholar]
  33. Paulsen I. T., Nguyen L., Sliwinski M. K., Saier M. H. Jr 2000; Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J Mol Biol 301:75–100 [CrossRef]
    [Google Scholar]
  34. Ren Q., Kang K. H., Paulsen I. T. 2004; TransportDB: a rational database of cellular membrane transport system. Nucleic Acids Res 32:D284–D288 [CrossRef]
    [Google Scholar]
  35. Saier M. H., Beatty J. T., Goffeau A., Harley K. T., Heijne W. H., Huang S. C., Jack D. L., Jahn P. S., Lew K. Jr other authors 1999; The major facilitator superfamily. J Mol Microbiol Biotechnol 64:354–411
    [Google Scholar]
  36. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  37. Sambrook J., Fritsh E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Schäfer A., Tauch A., Jager W., Kalinowski J., Thierbatch G., Pühler A. 1994; Small mobilizable multi-purpose cloning vector derived from the Escherichia coli plasmid pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73 [CrossRef]
    [Google Scholar]
  39. Shen X.-H., Liu S.-J. 2005; Key enzymes of the protocatechuate branch of the β -ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum . Sci China 48:241–249
    [Google Scholar]
  40. Shen X.-H., Liu Z.-P., Liu S.-J. 2004; Functional identification of the gene locus ( ncgl2319 ) and characterization of catechol 1,2-dioxygenase in Corynebacterium glutamicum . Biotechnol Lett 26:575–580 [CrossRef]
    [Google Scholar]
  41. Shen X.-H., Jiang C.-Y., Huang Y., Liu Z.-P., Liu S.-J. 2005a; Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum . Appl Environ Microbiol 71:3442–3452 [CrossRef]
    [Google Scholar]
  42. Shen X.-H., Huang Y., Liu S.-J. 2005b; Genomic analysis and identification of catabolic pathways for aromatic compounds in Corynebacterium glutamicum . Microbes and Environ 20:160–167 [CrossRef]
    [Google Scholar]
  43. Simic P., Sahm H., Eggeling L. 2001; l-Threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum . J Bacteriol 183:5317–5324 [CrossRef]
    [Google Scholar]
  44. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  45. Tauch A., Kassing F., Kalinowski J., Pühler A. 1995; The Corynebacterium xerosis composite transposon Tn5432 consists of two identical insertion sequences, designated IS1249, flanking the erythromycin resistance gene emrCX . Plasmid 34:119–131 [CrossRef]
    [Google Scholar]
  46. Tauch A., Kirchner O., Loffler B., Gotker S., Kalinowski J., Pühler A. 2002; Efficient transformation of Corynebacterium glutamicum with a mini-replicon derived from the Corynebacterium glutamicum plasmid pGA1. Curr Microbiol 45:362–367 [CrossRef]
    [Google Scholar]
  47. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  48. Tusnády G. E., Simon I. 2001; The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850 [CrossRef]
    [Google Scholar]
  49. Williams P. A., Shaw L. E. 1997; mucK , a gene in Acinetobacter calcoaceticus ADP1 (BD413) encodes the ability to grow on exogenous cis , cis -muconate as the sole carbon source. J Bacteriol 179:5935–5942
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/002501-0
Loading
/content/journal/micro/10.1099/mic.0.2006/002501-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error