1887

Abstract

A Gram-stain-negative, aerobic, motile, endospore-forming and rod-shaped bacterium, designated RA17, was isolated from Dafan, Hubei Province, China. Based on 16S rRNA gene sequence similarity comparisons, strain RA17 was most closely related to Paenibacillus taihuensis THMBG22 (97.4 %), Paenibacillus rhizoryzae ACCC 1ZS3-5 (97.4 %) and Paenibacillus sacheonensis DSM SY01 (96.5 %). Analysis of the rpoB gene also indicated that RA17 had the highest similarity to P. rhizoryzae ACCC 1ZS3-5 (92.3 %), P. taihuensis THMBG22 (88.4 %) and P. sacheonensis DSM SY01 (85.5 %). The DNA–DNA hybridization values between strain RA17 and the two type strains, P. taihuensis THMBG22 and P. rhizoryzae ACCC 1ZS3-5, were 36.8 and 22.9 %, respectively. Its genome size was 6.17 Mb, comprising 5677 predicted genes with a DNA G+C content of 52.82 mol %. The major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphoglycolipid, four aminophospholipids, an unidentified phospholipid and an unidentified polar lipid. The major quinone was menaquinone 7. The diagnostic diamino acid of the cell wall was meso-diaminopimelic acid. The low DNA–DNA hybridization values, physiological and biochemical differences, such as growth at 4 °C, acid production from inositol, lack of α-chymotrypsin activity, no casein hydrolysis, and negative for acid production from d-fructose, melibiose and sucrose, could distinguish strain RA17 from its closely related species. Consequently, strain RA17 represents a novel species of the genus Paenibacillus , for which the name Paenibacillus montanisoli sp. nov. is proposed, with RA17 (=KCTC 33894=CCTCC AB 2017053) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003036
2018-10-11
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3569.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003036&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1994; 64:253–260 [View Article]
    [Google Scholar]
  2. Stansly PG, Schlosser ME. Studies on polymyxin: isolation and identification of Bacillus polymyxa and differentiation of polymyxin from certain known antibiotics. J Bacteriol 1947; 54:549–556[PubMed]
    [Google Scholar]
  3. Vos PD, Ludwig W, Schleifer KH, Whitman WB. Family IV. Paenibacillaceae fam. nov. In In Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 3 New York: Springer; 2009 pp. 269
    [Google Scholar]
  4. Cao Y, Chen F, Li Y, Wei S, Wang G. Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 2015; 65:165–170 [View Article][PubMed]
    [Google Scholar]
  5. Nahar S, Cha CJ. Paenibacillus limicola sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2018; 68:423–426 [View Article][PubMed]
    [Google Scholar]
  6. Chen WM, Lin KR, Sheu SY. Paenibacillus lacus sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 2017; 67:1582–1588 [View Article][PubMed]
    [Google Scholar]
  7. Clermont D, Gomard M, Hamon S, Bonne I, Fernandez JC et al. Paenibacillus faecis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2015; 65:4621–4626 [View Article][PubMed]
    [Google Scholar]
  8. Siddiqi MZ, Siddiqi MH, Im WT, Kim YJ, Yang DC. Paenibacillus kyungheensis sp. nov., isolated from flowers of magnolia. Int J Syst Evol Microbiol 2015; 65:3959–3964 [View Article][PubMed]
    [Google Scholar]
  9. Menéndez E, Carro L, Tejedor C, Fernández-Pascual M, Martínez-Molina E et al. Paenibacillus hispanicus sp. nov. isolated from Triticum aestivum roots. Int J Syst Evol Microbiol 2016; 66:4628–4632 [View Article][PubMed]
    [Google Scholar]
  10. Madhaiyan M, Poonguzhali S, Saravanan VS, Pragatheswari D, Duraipandiyan V et al. Paenibacillus methanolicus sp. nov., a xylanolytic, methanol-utilizing bacterium isolated from the phyllosphere of bamboo (Pseudosasa japonica). Int J Syst Evol Microbiol 2016; 66:4362–4366 [View Article][PubMed]
    [Google Scholar]
  11. Kämpfer P, Busse HJ, Kloepper JW, Hu CH, McInroy JA et al. Paenibacillus cucumis sp. nov., isolated from a cucumber plant. Int J Syst Evol Microbiol 2016; 66:2599–2603 [View Article][PubMed]
    [Google Scholar]
  12. Sheela T, Usharani P. In uence of plant growth promoting rhizobacteria (PGPR) on the growth of maize (Zea mays L). Gold Res Thoughts 2013; 3:629–640
    [Google Scholar]
  13. De Souza R, Meyer J, Schoenfeld R, da Costa PB, Passaglia LMP. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 2014; 65:951–964 [View Article]
    [Google Scholar]
  14. Fürnkranz M, Adam E, Müller H, Grube M, Huss H et al. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol 2012; 134:509–519 [View Article]
    [Google Scholar]
  15. Ker K, Seguin P, Driscoll BT, Fyles JW, Smith DL. Switchgrass establishment and seeding year production can be improved by inoculation with rhizosphere endophytes. Biomass and Bioenergy 2014; 47:295–301 [View Article]
    [Google Scholar]
  16. Xiang W, Wang G, Wang Y, Yao R, Zhang F et al. Paenibacillus selenii sp. nov., isolated from selenium mineral soil. Int J Syst Evol Microbiol 2014; 64:2662–2667 [View Article][PubMed]
    [Google Scholar]
  17. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  18. Montes MJ, Mercadé E, Bozal N, Guinea J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004; 54:1521–1526 [View Article][PubMed]
    [Google Scholar]
  19. Takeda M, Suzuki I, Koizumi J. Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans. Int J Syst Evol Microbiol 2005; 55:737–741 [View Article][PubMed]
    [Google Scholar]
  20. Yao R, Wang R, Wang D, Su J, Zheng S et al. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int J Syst Evol Microbiol 2014; 64:805–811 [View Article][PubMed]
    [Google Scholar]
  21. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  22. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  23. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  24. Dahllöf I, Baillie H, Kjelleberg S. rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 2000; 66:3376–3380 [View Article][PubMed]
    [Google Scholar]
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  31. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  32. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485[PubMed]
    [Google Scholar]
  33. Barrow GI, Feltham RKA. (editors) Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  34. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  35. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  36. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  39. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  40. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  41. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  42. Wu YF, Wu QL, Liu SJ. Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. Int J Syst Evol Microbiol 2013; 63:3652–3658 [View Article][PubMed]
    [Google Scholar]
  43. Zhang L, Gao JS, Zhang S, Ali Sheirdil R, Wang XC et al. Paenibacillus rhizoryzae sp. nov., isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65:3053–3059 [View Article][PubMed]
    [Google Scholar]
  44. Moon JC, Jung YJ, Jung JH, Jung HS, Cheong YR et al. Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 2011; 61:2753–2757 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003036
Loading
/content/journal/ijsem/10.1099/ijsem.0.003036
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error