1887

Abstract

Hybrids between C-labeled ribosomal ribonucleic acid (rRNA) from either subsp. NCIB 9013, Acetobacter aceti subsp. NCIB 8621t, or subsp. ATCC 29191 and deoxyribonucleic acid (DNA) from acetic acid bacteria and representative strains of possibly related and other gram-negative bacteria were prepared. Each hybrid was described by two parameters: , the temperature at which 50% of the hybrid was denatured, and the percentage of rRNA. binding, the amount of C-labeled rRNA (in micrograms) duplexed under stringent conditions per 100 µg of filter-fixed homologous or heterologous DNA. Each taxon occupied a definite area on the rRNA similarity maps. Parameters of hybrids formed with rRNA from subsp. NCIB 9013 showed that the acetic acid bacteria consist of two separate but closely related groups corresponding to the genera When compared with rRNA from subsp. NCIB 8621t, both genera were indistinguishable, showing that there were many strains of. whose rRNA cistrons are as different from the rRNA as from rRNA. The rRNA cistrons of were more heterogeneous than these of The great similarities among the 's of the heterologous hybrids and among the numerous phenotypic features stress that both genera are more closely related to each other than to any other genus. The parameters of the DNA:rRNA hybrids located the acetic acid bacteria as a separate branch in an rRNA superfamily consisting of , some Spirillum species, and Parameters of hybrids formed with rRNA from subsp. ATCC 29191 showed that the genus forms a separate branch in the same rRNA superfamily. We detected a number of misnamed organisms. aceti subsp. NCIB 4112, aceti subsp. NCIB 6426, and lermae NRRL B-1810 belong in the genus IFO 3261, IAM 1814, sp. strains A4.1 and M28, NCPPB 461 and 462, and NCPPB 463 are all regular members of Our evidence is against the maintenance of “intermediate” strains of acetic acid bacteria. NCIB 9505 and IAM 1834 and IAM 1835 and IAM 1836 are genetically regular members of the genus IFO 3246 is a IFO 3249, 3247, 13330, and 13333 are not acetic acid bacteria at all. We propose to unite and in the family The ranges of the moles percent guanine plus cytosine of the DNAs have been determined for the different taxa in both genera.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-30-1-7
1980-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/30/1/ijs-30-1-7.html?itemId=/content/journal/ijsem/10.1099/00207713-30-1-7&mimeType=html&fmt=ahah

References

  1. Allen T. C., Riker A. J. 1932; A rot of apple fruit caused by Phytomonas melophthora n.sp., following invasion by the apple maggot. Phytopathology 22:557–571
    [Google Scholar]
  2. Ameyama M., Fujisawa H., Kondô K. 1965; Carbohydrate metabolism by the acetic acid bacteria. IV. On the patterns of carbohydrate oxidizabilities and their variation. J. Agric. Chem. Soc. Jpn 39:427–435
    [Google Scholar]
  3. Ameyama M., Kondô K. 1967; Carbohydrate me tabolism by the acetic acid bacteria. VI. Characteristics of the intermediate type strains. Agric. Biol. Chem 31:724–737
    [Google Scholar]
  4. Asai T. 1968; Acetic acid bacteria. University of Tokyo Press; Tokyo:
    [Google Scholar]
  5. Asai T., Iizuka H., Komagata K. 1964; The fla gellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J. Gen. Appl. Microbiol 10:95–126
    [Google Scholar]
  6. Bertrand G. 1904; Etude biochimique de la bactérie du sorbose. Ann. Chim. Phys 3:181–288
    [Google Scholar]
  7. Brown A. J. 1886; On an acetic ferment which forms cellulose. J. Chem. Soc. Trans 49:432–439
    [Google Scholar]
  8. Buchanan R. E., Gibbons N. E. ed 1974; Bergey’s manual of determinative bacteriology. , 8th. ed The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  9. Cole M. 1959; Bacterial rotting of apple fruit. Ann. Appl. Biol 47:601–611
    [Google Scholar]
  10. De Ley J. 1958; Studies on the metabolism of Acetobacter peroxydans. I. General properties and taxonomic position of the species. Antonie van Leeuwenhoek J. Microbiol. Serol 24:281–297
    [Google Scholar]
  11. De Ley J. 1961; Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol 24:31–50
    [Google Scholar]
  12. De Ley J. 1963; Some remarks on two papers by Shim- well et al., on acetic acid bacteria. Antonie van Leeuwenhoek J. Microbiol. Serol 29:305–307
    [Google Scholar]
  13. De Ley J., De Smedt J. 1975; Improvements of the membrane filter method for DNA:rRNA hybridi-zation. Antonie van Leeuwenhoek J. Microbiol. Serol 41:287–307
    [Google Scholar]
  14. De Ley J., Frateur J. 1974; Gluconobacter Asai 1935. p 251–253 Acetobacter Beijerinck 1898 p 276–278 In Buchanan R. E., Gibbons N. E. ed Bergey’s manual of determinative bacteriology. , 8th. ed The Williams & Wilkins Co; Baltimore:
    [Google Scholar]
  15. De Ley J., Schell J. 1963; Deoxyribonucleic acid base composition of acetic acid bacteria. J. Gen. Microbiol 33:243–253
    [Google Scholar]
  16. De Ley J., Segers P., Gillis M. 1978; Intra- and intergeneric similarities of Chromobacterium and Jan- thinobacterium ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol 28:154–168
    [Google Scholar]
  17. De Ley J., Tytgat R. 1970; Evaluation of mem brane filter methods for DNA: DNA hybridization. Antonie van Leeuwenhoek J. Microbiol. Serol. 36:461–474
    [Google Scholar]
  18. De Ley J., Van Muylem J. 1963; Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol 29:344–358
    [Google Scholar]
  19. De Smedt J., De Ley J. 1977; Intra- and interge neric similarities of Agrobacterium ribosomal ribonu-cleic acid cistrons. Int. J. Syst. Bacteriol 27:222–240
    [Google Scholar]
  20. Dhanvantari B. N., Dye D. W., Young J. M. 1978; Pseudomonas pomi Cole 1959 is a later subjective synonym of Acetobacter pasteurianus (Hansen 1879) Beijerinck 1898 and Pseudomonas melophthora Allen and Riker 1932 is a nomen dubium. Int. J. Syst. Bacteriol 28:532–537
    [Google Scholar]
  21. Emmerling O. 1899; Zur Kenntniss des Sorbosebacter- iums. Ber. Dtsch. Chem. Ges 32:541–542
    [Google Scholar]
  22. Frateur J. 1950; Essai sur la systématique des Acétobacters. Cellule 53:287–398
    [Google Scholar]
  23. Gonsalves De Lima O., Otamar Falcão De Morais J., Larios Carmona C. 1955; Nova espécie do género Acetobacter. A. lermae. . An. Soc. Biol. Pernambuco 13:13–17
    [Google Scholar]
  24. Grienenberger J. M., Simon D. 1975; Structure and biosynthesis of the ribosomal ribonucleic acids from the oncogenic bacterium Agrobacterium tumefaciens.. Biochem. J 149:23–30
    [Google Scholar]
  25. Hall A: N., Husain I., Tiwari K. S., Walker T. K. 1956; Nutritional requirements of Acetobacter species: inorganic ammonium salts as sources of nitrogen. J. Appl. Bacteriol 19:31–35
    [Google Scholar]
  26. Henrici A. T. 1939; The biology of bacteria. , 2nd. ed., p 1–494 D. C. Heath and Co; Chicago:
    [Google Scholar]
  27. Kasai T., Susuki I., Asai T. 1963; Glyoxylate oxidation in Acetobacter with reference to the formation of oxalic acid. J. Gen. Appl. Microbiol 9:49–58
    [Google Scholar]
  28. Kersters K., De Ley J. 1975; Identification and grouping of bacteria by numerical analysis of their electrophoretic protein patterns. J. Gen. Microbiol 87:333–342
    [Google Scholar]
  29. Kondô K., Ameyama M. 1958; Carbohydrate me tabolism by Acetobacter species. I. Oxidative activity for various carbohydrates. Bull. Agric. Chem. Soc. Jpn 22:369–372
    [Google Scholar]
  30. Kulka D., Preston J. M., Walker T. K. 1949; Giant colonies of Acetobacter species as an aid to identification. J. Inst. Brew 55:141–146
    [Google Scholar]
  31. Kulka D., Singh J., Nattrass R. M., Hall A. N., Walker T. K. 1958; Studies on vinegar bacteria. J. Sci. Food Agric 8:487–492
    [Google Scholar]
  32. Marmur J. 1961; A procedure for the isolation of deoxy ribonucleic acid from micro-organisms. J. Mol. Biol 3:208–218
    [Google Scholar]
  33. Ruiz-Argtieso T., Rodriguez-Navarro A. 1973; Gluconic acid-producing bacteria from honey bees and ripening honey. J. Gen. Microbiol 76:211–216
    [Google Scholar]
  34. Ruiz-Argiieso T., Rodriguez-Navarro A. 1975; Microbiology of ripening honey. Appl. Microbiol 30:893–896
    [Google Scholar]
  35. Schuch W., Loening U. E. 1975; The ribosomal ribonucleic acid of Agrobacterium tumefaciens. . Biochem. J 149:17–22
    [Google Scholar]
  36. Schwartz R. M., Dayhoff M. O. 1978; Origins of prokaryotes, eukaryotes, mitochondria and chloro- plasts. Science 199:395–403
    [Google Scholar]
  37. Shimwell J. L., Carr J. G. 1960; Derivation of nonacetifying “quasi-Acetobacters” from a true Aceto-bacter strain, and vice versa. Antonie van Leeuwenhoek J. Microbiol. Serol 26:169–181
    [Google Scholar]
  38. Swings J., De Ley J. 1975; Genome deoxyribonu cleic acid of the genus Zymomonas Kluyver and van Niel 1936: base composition, size and similarities. Int. J. Syst. Bacteriol 25:324–328
    [Google Scholar]
  39. Swings J., De Ley J. 1977; The biology of Zymomonas. . Bacteriol. Rev 41:1–46
    [Google Scholar]
  40. Szymona M., Doudoroff M. 1960; Carbohydrate metabolism in Rhodopseudomonas sphaeroides. . J. Gen. Microbiol 22:167–183
    [Google Scholar]
  41. Visser't Hooft F. 1925; Biochemische onderzoekingen over het geslacht Acetobacter. . Publ. W. D. Meinema, Delft; the Netherlands:
    [Google Scholar]
  42. Walker T. K., Tošić J. 1945; Acetobacter infection. II. Studies of Acetobacter viscosum and Acetobacter aceti isolated, respectively, from top-fermentation beer and yeast. J. Inst. Brew 51:245–250
    [Google Scholar]
  43. Yamada Y., Aida K., Uemura T. 1969; Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of genera Gluconobacter and Acetobacter especially on the so-called intermediate strains. J. Gen. Microbiol 15:181–196
    [Google Scholar]
  44. Yamada Y., Okada Y., Kondô K. 1976; Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J. Gen. Appl. Microbiol 22:237–245
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-30-1-7
Loading
/content/journal/ijsem/10.1099/00207713-30-1-7
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error