- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 65, Issue 8
- Article

f Occurrence, distribution and possible functional roles of simple sequence repeats in phytoplasma genomes
- Authors: Wei Wei1 , Robert E. Davis1 , Xiaobing Suo1 , Yan Zhao1
-
- VIEW AFFILIATIONS
-
1 Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD, 20705, USA
- Correspondence Yan Zhao [email protected]
- First Published Online: 01 August 2015, International Journal of Systematic and Evolutionary Microbiology 65: 2748-2760, doi: 10.1099/ijs.0.000273
- Subject: NEW TAXA - Evolution Phylogeny and Biodiversity
- Cover date:




Occurrence, distribution and possible functional roles of simple sequence repeats in phytoplasma genomes, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/65/8/2748_ijs000273-1.gif
-
Phytoplasmas are unculturable, cell-wall-less bacteria that parasitize plants and insects. This transkingdom life cycle requires rapid responses to vastly different environments, including transitions from plant phloem sieve elements to various insect tissues and alternations among diverse plant hosts. Features that enable such flexibility in other microbes include simple sequence repeats (SSRs) — mutation-prone, phase-variable short DNA tracts that function as ‘evolutionary rheostats’ and enhance rapid adaptations. To gain insights into the occurrence, distribution and potentially functional roles of SSRs in phytoplasmas, we performed computational analysis on the genomes of five completely sequenced phytoplasma strains, ‘Candidatus Phytoplasma asteris’-related strains OYM and AYWB, ‘Candidatus Phytoplasma australiense’-related strains CBWB and SLY and ‘Candidatus Phytoplasma mali’-related strain AP-AT. The overall density of SSRs in phytoplasma genomes was higher than in representative strains of other prokaryotes. While mono- and trinucleotide SSRs were significantly overrepresented in the phytoplasma genomes, dinucleotide SSRs and other higher-order SSRs were underrepresented. The occurrence and distribution of long SSRs in the prophage islands and phytoplasma-unique genetic loci indicated that SSRs played a role in compounding the complexity of sequence mosaics in individual genomes and in increasing allelic diversity among genomes. Findings from computational analyses were further complemented by an examination of SSRs in varied additional phytoplasma strains, with a focus on potential contingency genes. Some SSRs were located in regions that could profoundly alter the regulation of transcription and translation of affected genes and/or the composition of protein products.
-
Four supplementary tables are available with the online Supplementary Material.
-
Abbreviations: AMP antigenic membrane protein IMP immunodominant membrane protein SSR simple sequence repeat SVM sequence-variable mosaic
© 2015 IUMS | Published by the Microbiology Society
-
Ahrens U., Seemüller E.. ( 1992;). Detection of DNA of plant pathogenic mycoplasma like organisms by a polymerase chain reaction that amplifies a sequence of the 16S rRNA gene. Phytopathology 82: 828––832 [CrossRef].
-
Andersen M.T., Liefting L.W., Havukkala I., Beever R.E.. ( 2013;). Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics 14: 529 [CrossRef] [PubMed].
-
Arashida R., Kakizawa S., Hoshi A., Ishii Y., Jung H.Y., Kagiwada S., Yamaji Y., Oshima K., Namba S.. ( 2008a;). Heterogeneic dynamics of the structures of multiple gene clusters in two pathogenetically different lines originating from the same phytoplasma. DNA Cell Biol 27: 209––217 [CrossRef] [PubMed].
-
Arashida R., Kakizawa S., Ishii Y., Hoshi A., Jung H.Y., Kagiwada S., Yamaji Y., Oshima K., Namba S.. ( 2008b;). Cloning and characterization of the antigenic membrane protein (Amp) gene and in situ detection of Amp from malformed flowers infected with Japanese hydrangea phyllody phytoplasma. Phytopathology 98: 769––775 [CrossRef] [PubMed].
-
Bai X., Zhang J., Ewing A., Miller S.A., Jancso Radek A., Shevchenko D.V., Tsukerman K., Walunas T., Lapidus A., other authors. ( 2006;). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188: 3682––3696 [CrossRef] [PubMed].
-
Bayliss C.D., Field D., Moxon E.R.. ( 2001;). The simple sequence contingency loci of Haemophilus influenzae Neisseria meningitidis. J Clin Invest 107: 657––666 [CrossRef] [PubMed].
-
Boonrod K., Munteanu B., Jarausch B., Jarausch W., Krczal G.. ( 2012;). An immunodominant membrane protein (Imp) of ‘Candidatus Phytoplasma mali’ binds to plant actin. Mol Plant Microbe Interact 25: 889––895 [CrossRef] [PubMed].
-
Bukata L., Altabe S., de Mendoza D., Ugalde R.A., Comerci D.J.. ( 2008;). Phosphatidylethanolamine synthesis is required for optimal virulence of Brucella abortus. J Bacteriol 190: 8197––8203 [CrossRef] [PubMed].
-
Chen Y.L., Montedonico A.E., Kauffman S., Dunlap J.R., Menn F.M., Reynolds T.B.. ( 2010;). Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans. Mol Microbiol 75: 1112––1132 [CrossRef] [PubMed].
-
Chistiakov D.A., Hellemans B., Haley C.S., Law A.S., Tsigenopoulos C.S., Kotoulas G., Bertotto D., Libertini A., Volckaert F.A.. ( 2005;). A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics 170: 1821––1826 [CrossRef] [PubMed].
-
Coenye T., Vandamme P.. ( 2005;). Characterization of mononucleotide repeats in sequenced prokaryotic genomes. DNA Res 12: 221––233 [CrossRef] [PubMed].
-
Conde-Alvarez R., Grilló M.J., Salcedo S.P., de Miguel M.J., Fugier E., Gorvel J.P., Moriyón I., Iriarte M.. ( 2006;). Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 8: 1322––1335 [CrossRef] [PubMed].
-
Davis R.E., Jomantiene R., Zhao Y., Dally E.L.. ( 2003;). Folate biosynthesis pseudogenes, (folP and (folK, and an O-sialoglycoprotein endopeptidase gene homolog in the phytoplasma genome. DNA Cell Biol 22: 697––706 [CrossRef] [PubMed].
-
Davis R.E., Jomantiene R., Zhao Y.. ( 2005;). Lineage-specific decay of folate biosynthesis genes suggests ongoing host adaptation in phytoplasmas. DNA Cell Biol 24: 832––840 [CrossRef] [PubMed].
-
Doi Y.M., Teranaka M., Yora K., Asuyama H.. ( 1967;). Mycoplasma or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches'-broom, aster yellows, or paulownia witches'-broom. Ann Phytopathol Soc Jpn 33: 259––266 [CrossRef].
-
Ellegren H.. ( 2004;). Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5: 435––445 [CrossRef] [PubMed].
-
Field D., Wills C.. ( 1998;). Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. Proc Natl Acad Sci U S A 95: 1647––1652 [CrossRef] [PubMed].
-
Gedvilaite A., Jomantiene R., Dabrisius J., Norkiene M., Davis R.E.. ( 2014;). Functional analysis of a lipolytic protein encoded in phytoplasma phage based genomic island. Microbiol Res 169: 388––394 [CrossRef] [PubMed].
-
Gundersen D.E., Lee I.-M., Rehner S.A., Davis R.E., Kingsbury D.T.. ( 1994;). Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. J Bacteriol 176: 5244––5254 [PubMed].
-
Gur-Arie R., Cohen C.J., Eitan Y., Shelef L., Hallerman E.M., Kashi Y.. ( 2000;). Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res 10: 62––71 [PubMed].
-
Harrison N., Davis R.E., Oropeza C., Helmick E., Narvaez M., Eden-Green S., Dollet M., Dickinson M.. ( 2014;). ‘Candidatus Phytoplasma palmicola’, associated with a lethal yellowing-type disease of coconut (Cocos nucifera L.) in Mozambique. Int J Syst Evol Microbiol 64: 1890––1899 [CrossRef].
-
Heringa J., Taylor W.R.. ( 1997;). Three-dimensional domain duplication, swapping and stealing. Curr Opin Struct Biol 7: 416––421 [CrossRef] [PubMed].
-
Jomantiene R., Davis R.E.. ( 2006;). Clusters of diverse genes existing as multiple, sequence-variable mosaics in a phytoplasma genome. FEMS Microbiol Lett 255: 59––65 [CrossRef] [PubMed].
-
Jomantiene R., Zhao Y., Davis R.E.. ( 2007;). Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas. DNA Cell Biol 26: 557––564 [CrossRef] [PubMed].
-
Kakizawa S., Oshima K., Nishigawa H., Jung H.Y., Wei W., Suzuki S., Tanaka M., Miyata S., Ugaki M., Namba S.. ( 2004;). Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 150: 135––142 [CrossRef] [PubMed].
-
Karlin S., Brocchieri L., Bergman A., Mrazek J., Gentles A.J.. ( 2002;). Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A 99: 333––338 [CrossRef] [PubMed].
-
Kashi Y., King D.G.. ( 2006;). Simple sequence repeats as advantageous mutators in evolution. Trends Genet 22: 253––259 [CrossRef] [PubMed].
-
Kashi Y., King D., Soller M.. ( 1997;). Simple sequence repeats as a source of quantitative genetic variation. Trends Genet 13: 74––78 [CrossRef] [PubMed].
-
Katti M.V., Ranjekar P.K., Gupta V.S.. ( 2001;). Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18: 1161––1167 [CrossRef] [PubMed].
-
King D.G.. ( 1994;). Triple repeat DNA as a highly mutable regulatory mechanism. Science 263: 595––596 [CrossRef] [PubMed].
-
Kube M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A.M., Reinhardt R., Seemüller E.. ( 2008;). The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics 9: 306 [CrossRef] [PubMed].
-
Kube M., Mitrovic J., Duduk B., Rabus R., Seemüller E.. ( 2012;). Current view on phytoplasma genomes and encoded metabolism. ScientificWorldJournal 2012: 185942 [CrossRef] [PubMed].
-
Leclercq S., Rivals E., Jarne P.. ( 2010;). DNA slippage occurs at microsatellite loci without minimal threshold length in humans: a comparative genomic approach. Genome Biol Evol 2: 325––335 [CrossRef] [PubMed].
-
Lee I.-M., Davis R.E., Gundersen-Rindal D.E.. ( 2000;). Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54: 221––255 [CrossRef] [PubMed].
-
Li Y.C., Korol A.B., Fahima T., Beiles A., Nevo E.. ( 2002;). Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11: 2453––2465 [CrossRef] [PubMed].
-
Li Y.C., Korol A.B., Fahima T., Nevo E.. ( 2004;). Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21: 991––1007 [CrossRef] [PubMed].
-
Liu L., Panangala V.S., Dybvig K.. ( 2002;). Trinucleotide GAA repeats dictate pMGA gene expression in Mycoplasma gallisepticum by affecting spacing between flanking regions. J Bacteriol 184: 1335––1339 [CrossRef] [PubMed].
-
Loire E., Higuet D., Netter P., Achaz G.. ( 2013;). Evolution of coding microsatellites in primate genomes. Genome Biol Evol 5: 283––295 [CrossRef] [PubMed].
-
Morton A., Davies D.L., Blomquist C.L., Barbara D.J.. ( 2003;). Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Mol Plant Pathol 4: 109––114 [CrossRef] [PubMed].
-
Moxon R., Bayliss C., Hood D.. ( 2006;). Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu Rev Genet 40: 307––333 [CrossRef] [PubMed].
-
Mrázek J.. ( 2006;). Analysis of distribution indicates diverse functions of simple sequence repeats in Mycoplasma genomes. Mol Biol Evol 23: 1370––1385 [CrossRef] [PubMed].
-
Mrázek J., Guo X., Shah A.. ( 2007;). Simple sequence repeats in prokaryotic genomes. Proc Natl Acad Sci U S A 104: 8472––8477 [CrossRef] [PubMed].
-
Oshima K., Kakizawa S., Nishigawa H., Jung H.Y., Wei W., Suzuki S., Arashida R., Nakata D., Miyata S., other authors. ( 2004;). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36: 27––29 [CrossRef] [PubMed].
-
Oshima K., Kakizawa S., Arashida R., Ishii Y., Hoshi A., Hayashi Y., Kagiwada S., Namba S.. ( 2007;). Presence of two glycolytic gene clusters in a severe pathogenic line of Candidatus Phytoplasma asteris. Mol Plant Pathol 8: 481––489 [CrossRef] [PubMed].
-
Rocha E.P.C., Blanchard A.. ( 2002;). Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res 30: 2031––2042 [CrossRef] [PubMed].
-
Rocha E.P.C., Matic I., Taddei F.. ( 2002;). Over-representation of repeats in stress response genes: a strategy to increase versatility under stressful conditions?. Nucleic Acids Res 30: 1886––1894 [CrossRef] [PubMed].
-
Shuman S.. ( 1994;). Novel approach to molecular cloning and polynucleotide synthesis using vaccinia DNA topoisomerase. J Biol Chem 269: 32678––32684 [PubMed].
-
Simmons W.L., Denison A.M., Dybvig K.. ( 2004;). Resistance of Mycoplasma pulmonis to complement lysis is dependent on the number of Vsa tandem repeats: shield hypothesis. Infect Immun 72: 6846––6851 [CrossRef] [PubMed].
-
Suzuki S., Oshima K., Kakizawa S., Arashida R., Jung H.Y., Yamaji Y., Nishigawa H., Ugaki M., Namba S.. ( 2006;). Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci U S A 103: 4252––4257 [CrossRef] [PubMed].
-
Tran-Nguyen L.T.T., Kube M., Schneider B., Reinhardt R., Gibb K.S.. ( 2008;). Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” strains OY-M and AY-WB. J Bacteriol 190: 3979––3991 [CrossRef] [PubMed].
-
Trivedi S.. ( 2006;). Comparison of simple sequence repeats in 19 archaea. Genet Mol Res 5: 741––772 [PubMed].
-
Trivedi S.. ( 2013;). Repeats in transforming acidic coiled-coil (TACC) genes. Biochem Genet 51: 458––473 [CrossRef] [PubMed].
-
Tsai J.H.. ( 1979;). Vector transmission of mycoplasmal agents of plant diseases. . In The Mycoplasmas, pp. 265––307. Edited by Whitcomb R. F, Tully J. G. San Diego: [CrossRef] Academic Press;.
-
van Belkum A., Scherer S., van Alphen L., Verbrugh H.. ( 1998;). Short-sequence DNA repeats in prokaryotic genomes. Microbiol Mol Biol Rev 62: 275––293 [PubMed].
-
Wei W., Davis R.E., Lee I.-M., Zhao Y.. ( 2007;). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 57: 1855––1867 [CrossRef] [PubMed].
-
Wei W., Davis R.E., Jomantiene R., Zhao Y.. ( 2008;). Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. Proc Natl Acad Sci U S A 105: 11827––11832 [CrossRef] [PubMed].
-
Young E.T., Sloan J.S., Van Riper K.. ( 2000;). Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. Genetics 154: 1053––1068 [PubMed].
-
Zhao Y., Wei W., Lee I.M., Shao J., Suo X., Davis R.E.. ( 2009;). Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59: 2582––2593 [CrossRef] [PubMed].
-
Zhao Y., Wei W., Davis R.E., Lee I.-M.. ( 2010;). Recent advances in 16S rRNA gene-based phytoplasma differentiation, classification and taxonomy. . In Phytoplasmas: Genomes, Plant Hosts and Vector, pp. 64––92. Edited by Weintraub P, Jones P. Wallingford, UK: CABI Publishing;.
-
Zhao Y., Davis R.E., Wei W., Shao J., Jomantiene R.. ( 2014;). Phytoplasma genomes: evolution through mutually complementary mechanisms, gene loss and horizontal acquisition. . In Genomics of Plant-Associated Bacteria, pp. 235––271. Edited by Gross D, Lichens-Park A, Kole C. Heidelberg: [CrossRef] Springer;.

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijs.0.000273dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijs.0.000273dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....