1887

Abstract

Strain c1, originally isolated from surface water of a freshwater pond located in Pingtung (southern Taiwan) used for culture of Pacific white shrimp (), was subjected to a polyphasic taxonomic analysis. The strain exhibited strong chitinolytic activity and was able to grow under aerobic and anaerobic conditions by utilizing chitin exclusively as the carbon, nitrogen and energy source. Phylogenetic analysis of the 16S rRNA gene sequence revealed a clear affiliation to the , with the closest relatives being C14 and S1, respectively showing 96.7 and 93.6 % 16S rRNA gene sequence similarity. The predominant fatty acids detected in cells of strain c1 were C, C 7 and summed feature 3 (C 7 and/or iso-C 2-OH). The GC content of the genomic DNA was 62.2±1.0 mol%. On the basis of phylogenetic analysis, DNA–DNA hybridization data, physiological and biochemical characteristics and fatty acid compositions, the organism was shown to belong to the genus whilst representing a novel species within this genus, for which we propose the name sp. nov. (type strain c1 =DSM 21440 =BCRC 17609).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.005090-0
2009-11-01
2024-05-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/11/2651.html?itemId=/content/journal/ijsem/10.1099/ijs.0.005090-0&mimeType=html&fmt=ahah

References

  1. Chang, S. C., Wang, J. T., Vandamme, P., Hwang, J. H., Chang, P. S. & Chen, W. M.(2004).Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 27, 43–49.[CrossRef] [Google Scholar]
  2. Chang, S. C., Chen, W. M., Wang, J. T. & Wu, M. C.(2007).Chitinilyticum aquatilis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for Pacific white shrimp culture. Int J Syst Evol Microbiol 57, 2854–2860.[CrossRef] [Google Scholar]
  3. Chen, W. M., Laevens, S., Lee, T. M., Coenye, T., De Vos, P., Mergeay, M. & Vandamme, P.(2001).Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51, 1729–1735.[CrossRef] [Google Scholar]
  4. Chern, L. L., Stackebrandt, E., Lee, S. F., Lee, F. L., Chen, J. K. & Fu, H. M.(2004).Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 54, 1387–1391.[CrossRef] [Google Scholar]
  5. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W.(2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequence. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef] [Google Scholar]
  6. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  7. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  8. GCG(1995).Wisconsin Package Version 8.1 Program Manual. Madison, WI: Genetics Computer Group.
  9. Gooday, G. W.(1990). The ecology of chitin degradation. Adv Microb Ecol 11, 387–430. [Google Scholar]
  10. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  11. Hippe, H., Hagelstein, A., Kramer, I., Swiderski, J. & Stackebrandt, E.(1999). Phylogenetic analysis of Formivibrio citricus, Propionivibrio dicarboxylicus, Anaerobiospirillum thomasii, Succinimonas amylolytica and Succinivibrio dextrinosolvens and proposal of Succinivibrionaceae fam. nov. Int J Syst Bacteriol 49, 779–782.[CrossRef] [Google Scholar]
  12. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  13. Kluge, A. G. & Farris, F. S.(1969). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef] [Google Scholar]
  14. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  15. Logan, N. A.(1989). Numerical taxonomy of violet-pigmented, gram-negative bacteria and description of Iodobacter fluviatile gen. nov., comb. nov. Int J Syst Bacteriol 39, 450–456.[CrossRef] [Google Scholar]
  16. MacFaddin, J. F.(2000).Biochemical Tests for the Identification of Medical Bacteria, 3rd edn. Baltimore: Williams & Wilkins.
  17. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  18. MIDI(1999).Sherlock Microbial Identification System, Operating Manual, version 3.0. Newark, DE: MIDI, Inc.
  19. Powers, E. M.(1995). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61, 3756–3758. [Google Scholar]
  20. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  21. Shigemasa, Y. & Minami, S.(1996). Applications of chitin and chitosan for biomaterials. Biotechnol Genet Eng Rev 13, 383–420.[CrossRef] [Google Scholar]
  22. Stackebrandt, E., Lang, E., Cousin, S., Päuker, O., Brambilla, E., Kroppenstedt, R. & Lünsdorf, H.(2007).Deefgea rivuli gen. nov., sp. nov., a member of the class Betaproteobacteria. Int J Syst Evol Microbiol 57, 639–645.[CrossRef] [Google Scholar]
  23. Yang, H.-C., Im, W.-T., An, D.-S., Park, W.-S., Kim, I. S. & Lee, S.-T.(2005).Silvimonas terrae gen. nov., sp. nov., a novel chitin-degrading facultative anaerobe belonging to the ‘Betaproteobacteria’. Int J Syst Evol Microbiol 55, 2329–2332.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.005090-0
Loading
/content/journal/ijsem/10.1099/ijs.0.005090-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error