1887

Abstract

An aerobic, heterotrophic, Gram-negative, curved bacterial strain, designated MIL-1, was isolated by extinction dilution from an n-tetradecane enrichment culture that was established from sea water/sediment samples collected in the harbour of Milazzo, Italy. In the primary enrichment, the isolate formed creamy-white, medium-sized colonies on the surface of the agar. The isolate did not grow in the absence of NaCl; growth was optimal at 2·7 % NaCl. Only a narrow spectrum of organic compounds, including aliphatic hydrocarbons (C–C), their oxidized derivatives and acetate, were used as growth substrates. The isolate was not able to grow under denitrifying conditions. The DNA G+C content and genome size of strain MIL-1 were estimated to be 53·2 mol% and 2·2 Mbp, respectively. The major cellular and phospholipid fatty acids were palmitoleic, palmitic and oleic acids (33·5, 29·5 and 11·0 % and 18, 32 and 31 %, respectively). 3-Hydroxy lauric acid was the only hydroxy fatty acid detected. Thirteen different compounds that belonged to two types of phospholipid (phosphatidylethylamine and phosphatidylglycerol) were identified. 16S rRNA gene sequence analysis revealed that this isolate represents a distinct phyletic lineage within the - and has about 94·4 % sequence similarity to (the closest bacterial species with a validly published name). The deduced protein sequence of the putative alkane hydrolase, AlkB, of strain MIL-1 is related to the corresponding enzymes of and (81 and 80 % similarity, respectively). On the basis of the analyses performed, gen. nov., sp. nov. is described. Strain MIL-1 (=DSM 14913=LMG 21420) is the type and only strain of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02424-0
2004-01-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/1/ijs540141.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02424-0&mimeType=html&fmt=ahah

References

  1. Abraham W.-R., Meyer H., Lindholst S., Vancanneyt M., Smit J. 1997; Phospho- and sulfolipids as biomarkers of Caulobacter sensu lato , Brevundimonas and Hyphomonas . Syst Appl Microbiol 20:522–539 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  4. Bowditch R. D., Baumann L., Baumann P. 1984; Description of Oceanospirillum kriegii sp.nov. and O. jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O. commune comb. nov. and O. vagum comb. nov. Curr Microbiol 10:221–230 [CrossRef]
    [Google Scholar]
  5. Button D. K., Robertson B. R., Lepp P. W., Schmidt T. M. 1998; A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl Environ Microbiol 64:4467–4476
    [Google Scholar]
  6. Dutta T. K., Harayama S. 2001; Biodegradation of n -alkylcycloalkanes and n -alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl Environ Microbiol 67:1970–1974 [CrossRef]
    [Google Scholar]
  7. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T. 1995; Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123 [CrossRef]
    [Google Scholar]
  8. Fang J., Barcelona M. J., Nogi Y., Kato C. 2000; Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Mariana Trench at 11,000 m. Deep-Sea Res Part I Oceanogr Res Pap 47:1173–1182 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  10. Gauthier M. J., Lafay B., Christen R., Fernandez L., Acquaviva M., Bonin P., Bertrand J.-C. 1992; Marinobacter hydrocarbonoclasticus gen nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576 [CrossRef]
    [Google Scholar]
  11. Golyshin P. N., Chernikova T. N., Abraham W.-R., Lünsdorf H., Timmis K. N., Yakimov M. M. 2002; Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52:901–911 [CrossRef]
    [Google Scholar]
  12. Golyshina O. V., Pivovarova T. A., Karavaiko G. I. 7 other authors 2000; Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea . Int J Syst Evol Microbiol 50:997–1006 [CrossRef]
    [Google Scholar]
  13. González J. M., Whitman W. B. 2001; Oceanospirillum and related genera. In The Prokaryotes (available at) http://link.springer-ny.com/link/service/books/10125/tocs.htm
    [Google Scholar]
  14. Gutell R. R. 1994; Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res 22:3502–3507 [CrossRef]
    [Google Scholar]
  15. Harayama S., Kishira H., Kasai Y., Shutsubo K. 1999; Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70
    [Google Scholar]
  16. Hedlund B. P., Geiselbrecht A. D., Bair T. J., Staley J. T. 1999; Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp nov.. Appl Environ Microbiol 65:251–259
    [Google Scholar]
  17. Kasai Y., Kishira H., Syutsubo K., Harayama S. 2001; Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3:246–255 [CrossRef]
    [Google Scholar]
  18. Krieg N. R. 1984; Genus Oceanospirillum Hylemon, Wells, Krieg and Jannasch 1973, 361AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  104–110 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  19. Lechevalier M. P. 1977; Lipids in bacterial taxonomy – a taxonomist's view. Crit Rev Microbiol 5:109–210 [CrossRef]
    [Google Scholar]
  20. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R. 1997; The RDP (Ribosomal Database Project). Nucleic Acids Res 25:109–111 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Murphy R. C., Harrison K. A. 1994; Fast atom bombardment mass spectrometry of phospholipids. Mass Spectrom Rev 13:57–75 [CrossRef]
    [Google Scholar]
  23. Pot B., Gillis M., De Ley J. 1992; The genus Oceanospirillum . In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications . , 2nd edn. vol 4 pp  3230–3236 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
  24. Rambaut A. 1996 Se-Al (Sequence Alignment Editor), version 1.0 α 1. Distributed by the author and available via Department of Zoology, University of Oxford, UK; http://evolve.zoo.ox.ac.uk/software.html?id=seal
    [Google Scholar]
  25. Satomi M., Kimura B., Hayashi M., Shouzen Y., Okuzumi M., Fujii T. 1998; Marinospirillum gen. nov., with descriptions of Marinospirillum megaterium sp. nov., isolated from kusaya gravy, and transfer of Oceanospirillum minutulum to Marinospirillum minutulum comb. nov. Int J Syst Bacteriol 48:1341–1348 [CrossRef]
    [Google Scholar]
  26. Satomi M., Kimura B., Hamada T., Harayama S., Fujii T. 2002; Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum , description of Pseudospirillum gen.nov., Oceanobacter gen. nov. and Terasakiella gen. nov.and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. Int J Syst Evol Microbiol 52:739–747 [CrossRef]
    [Google Scholar]
  27. Smits T. H. M., Röthlisberger M., Witholt B., van Beilen J. B. 1999; Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ Microbiol 1:307–317 [CrossRef]
    [Google Scholar]
  28. Syutsubo K., Kishira H., Harayama S. 2001; Development of specific oligonucleotide probes for the identification and in situ detection of hydrocarbon-degrading Alcanivorax strains. Environ Microbiol 3:371–379 [CrossRef]
    [Google Scholar]
  29. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  30. Vancanneyt M., Witt S., Abraham W.-R., Kersters K., Fredrickson H. L. 1996; Fatty acid content in whole-cell hydrolysates and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 19:528–540 [CrossRef]
    [Google Scholar]
  31. Wang Y., Lau P. C. K., Button D. K. 1996; A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil pseudomonads. Appl Environ Microbiol 62:2169–2173
    [Google Scholar]
  32. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  33. Yakimov M. M., Giuliano L., Gentile G., Crisafi E., Chernikova T. N., Abraham W.-R., Lünsdorf H., Timmis K. N., Golyshin P. N. 2003; Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02424-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02424-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error