- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 66, Issue 4
- Article

- « Previous Article
- Table of Contents
- Next Article »
f Multilocus sequence analysis supports the taxonomic position of Astragalus glycyphyllos symbionts based on DNA–DNA hybridization
- Authors: Sebastian Gnat1 , Wanda Małek2 , Ewa Oleńska3 , Sylwia Wdowiak-Wróbel2 , Michał Kalita2 , Jerzy Rogalski4 , Magdalena Wójcik2
-
- VIEW AFFILIATIONS
-
1 1 Department of Veterinary Microbiology, University of Life Sciences, 13 Akademicka st., 20-950 Lublin, Poland 2 2 Department of Genetics and Microbiology, University of Maria Curie-Sklodowska, 19 Akademicka st., 20-033 Lublin, Poland 3 3 Department of Genetics and Evolution, University of Bialystok, 1J Ciolkowskiego st., 15-245 Bialystok, Poland 4 4 Department of Biochemistry, University of Maria Curie-Sklodowska, 19 Akademicka st., 20-033 Lublin, Poland
- Correspondence Wanda Małek [email protected]
- First Published Online: 01 April 2016, International Journal of Systematic and Evolutionary Microbiology 66: 1906-1912, doi: 10.1099/ijsem.0.000862
- Subject: EVOLUTION, PHYLOGENY AND BIODIVERSITY
- Cover date:




Multilocus sequence analysis supports the taxonomic position of Astragalus glycyphyllos symbionts based on DNA–DNA hybridization, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/66/4/1906_ijsem000862-1.gif
-
In this study, the phylogenetic relationship and taxonomic status of six strains, representing different phenons and genomic groups of Astragalus glycyphyllos symbionts, originating from Poland, were established by comparative analysis of five concatenated housekeeping gene sequences (atpD, dnaK, glnA, recA and rpoB), DNA–DNA hybridization and total DNA G+C content. Maximum-likelihood phylogenetic analysis of combined atpD, dnaK, glnA, recA and rpoB sequence data placed the studied bacteria into the clade comprising the genus Mesorhizobium. In the core gene phylograms, four A. glycyphyllos nodule isolates (AG1, AG7, AG15 and AG27) formed a cluster common with Mesorhizobium ciceri, whereas the two other A. glycyphyllos symbionts (AG17 and AG22) were grouped together with Mesorhizobium amorphae and M. septentrionale. The species position of the studied bacteria was clarified by DNA–DNA hybridization. The DNA–DNA relatedness between isolates AG1, AG7, AG15 and AG27 and reference strain M. ciceri USDA 3383T was 76.4–84.2 %, and all these A. glycyphyllos nodulators were defined as members of the genomospecies M. ciceri. DNA–DNA relatedness for isolates AG17 and AG22 and the reference strain M. amorphae ICMP 15022T was 77.5 and 80.1 %, respectively. We propose that the nodule isolates AG17 and AG22 belong to the genomic species M. amorphae. Additionally, it was found that the total DNA G+C content of the six test A. glycyphyllos symbionts was 59.4–62.1 mol%, within the range for species of the genus Mesorhizobium.
-
The GenBank/EMBL/DDBJ accession numbers for the recA, dnaK, rpoB, glnA and atpD sequences of strains AG1, AG7, AG15, AG17, AG22 and AG27 are respectively KP132944–KP132946, KP132949, KP132948 and KP132947 (recA), KP132954, KP132952, KP132955, KP132950, KP132951 and KP132953 (dnaK), KP009850, KP009852–KP009855 and KP009851 (rpoB), KP009856, KP009857, KP009859–KP009861 and KP009858 (glnA) and KP009844–KP009846, KP009849, KP009848 and KP009847 (atpD).
-
Five supplementary figures are available with the online Supplementary Material.
-
Abbreviations: ML maximum-likelihood MLSA multilocus sequence analysis SSU small subunit
© 2015 IUMS | Published by the Microbiology Society
-
Berrada H. , Fikri-Benbrahim K. . ( 2014;). Taxonomy of the rhizobia: current perspectives. Br Microbiol Res J 4: 616––639 [CrossRef].
-
Broughton W. J. . ( 2003;). Roses by other names: taxonomy of the Rhizobiaceae . J Bacteriol 185: 2975––2979 [CrossRef] [PubMed].
-
Coenye T. , Gevers D. , Van de Peer Y. , Vandamme P. , Swings J. . ( 2005;). Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 29: 147––167 [CrossRef] [PubMed].
-
Eardly B. D. , Wang F.-S. , van Berkum P. . ( 1996;). Corresponding 16S rRNA gene segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186: 69––74 [CrossRef].
-
Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224––229 [CrossRef].
-
Gao J. L. , Turner S. L. , Kan F. L. , Wang E. T. , Tan Z. Y. , Qiu Y. H. , Gu J. , Terefework Z. , Young J. P. W. , other authors . ( 2004;). Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54: 2003––2012 [CrossRef] [PubMed].
-
Gaunt M. W. , Turner S. L. , Rigottier-Gois L. , Lloyd-Macgilp S. A. , Young J. P. W. . ( 2001;). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51: 2037––2048 [CrossRef] [PubMed].
-
Gevers D. , Coenye T. . ( 2007;). Phylogenetic and genomic analysis. . In Manual of Environmental Microbiology, pp. 157––168. Edited by Hurst C. J. , Crawford R. L. , Garland J. L. , Lipson D. A. , Mills A. L. , Stetzenbach L. D. . Washington, DC: American Society for Microbiology;.
-
Gevers D. , Cohan F. M. , Lawrence J. G. , Spratt B. G. , Coenye T. , Feil E. J. , Stackebrandt E. , Van de Peer Y. , Vandamme P. , other authors . ( 2005;). Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3: 733––739 [CrossRef] [PubMed].
-
Gevers D. , Dawyndt P. , Vandamme P. , Willems A. , Vancanneyt M. , Swings J. , De Vos P. . ( 2006;). Stepping stones towards a new prokaryotic taxonomy. Philos Trans R Soc Lond B Biol Sci 361: 1911––1916 [CrossRef] [PubMed].
-
Gnat S. , Wójcik M. , Wdowiak-Wróbel S. , Kalita M. , Ptaszyńska A. , Małek W. . ( 2014;). Phenotypic characterization of Astragalus glycyphyllos symbionts and their phylogeny based on the 16S rDNA sequences and RFLP of 16S rRNA gene. Antonie van Leeuwenhoek 105: 1033––1048 [CrossRef] [PubMed].
-
Grimont P. A. D. , Popoff M. Y. , Grimont F. , Coynault C. , Lemelin M. . ( 1980;). Reproducibility and correlation study of three deoxyribonucleic acid hybridization procedures. Curr Microbiol 4: 325––330 [CrossRef].
-
Guindon S. , Gascuel O. . ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696––704 [CrossRef] [PubMed].
-
Hanage W. P. , Fraser C. , Spratt B. G. . ( 2006;). Sequences, sequence clusters and bacterial species. Philos Trans R Soc Lond B Biol Sci 361: 1917––1927 [CrossRef] [PubMed].
-
Huss V. A. , Festl H. , Schleifer K. H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184––192 [CrossRef] [PubMed].
-
Janda J. M. , Abbott S. L. . ( 2006;). The Enterobacteria , 2nd edn. Washington, DC: Society for Microbiology;. [CrossRef]
-
Jarvis B. D. W. , Van Berkum P. , Chen W. X. , Nour S. M. , Fernandez M. P. , Cleyet-Marel J. C. , Gillis M. . ( 1997;). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov.. Int J Syst Bacteriol 47: 895––898 [CrossRef].
-
Kalita M. , Małek W. , Kaznowski A. . ( 2004;). Analysis of genetic relationship of Sarothamnus scoparius microsymbionts and Bradyrhizobium sp. by hybridization in microdilution wells. J Biosci Bioeng 97: 158––161 [CrossRef] [PubMed].
-
Konstantinidis K. T. , Tiedje J. M. . ( 2005a;). Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102: 2567––2572 [CrossRef] [PubMed].
-
Konstantinidis K. T. , Tiedje J. M. . ( 2005b;). Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187: 6258––6264 [CrossRef] [PubMed].
-
Maróti G. , Kondorosi E. . ( 2014;). Nitrogen-fixing rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?. Front Microbiol 5: 326 [PubMed].
-
Martens M. , Delaere M. , Coopman R. , De Vos P. , Gillis M. , Willems A. . ( 2007;). Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57: 489––503 [CrossRef] [PubMed].
-
Martens M. , Dawyndt P. , Coopman R. , Gillis M. , De Vos P. , Willems A. . ( 2008;). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58: 200––214 [CrossRef] [PubMed].
-
Merabet C. , Martens M. , Mahdhi M. , Zakhia F. , Sy A. , Le Roux C. , Domergue O. , Coopman R. , Bekki A. , other authors . ( 2010;). Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum, Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov.. Int J Syst Evol Microbiol 60: 664––674 [CrossRef] [PubMed].
-
Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159––167 [CrossRef].
-
Mierzwa B. , Wdowiak-Wróbel S. , Małek W. . ( 2010;). Robinia pseudoacacia in Poland and Japan is nodulated by Mesorhizobium amorphae strains. Antonie van Leeuwenhoek 97: 351––361 [CrossRef] [PubMed].
-
Naser S. M. , Thompson F. L. , Hoste B. , Gevers D. , Dawyndt P. , Vancanneyt M. , Swings J. . ( 2005;). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151: 2141––2150 [CrossRef] [PubMed].
-
Nicholas K. B. , Nicholas H. B. J. . ( 1997;). GeneDoc Pittsburgh: Pittsburgh Supercomputing Center;.
-
Nørskov-Lauritsen N. , Christensen H. , Okkels H. , Kilian M. , Bruun B. . ( 2004;). Delineation of the genus Actinobacillus by comparison of partial infB sequences. Int J Syst Evol Microbiol 54: 635––644 [CrossRef] [PubMed].
-
Nour S. M. , Cleyet-Marel J.-C. , Normand P. , Fernandez M. P. . ( 1995;). Genomic heterogeneity of strains nodulating chick-peas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45: 640––648.[CrossRef]
-
Page R. D. M. . ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357––358 [PubMed].
-
Pérez-Yépez J. , Armas-Capote N. , Velázquez E. , Pérez-Galdona R. , Rivas R. , León-Barrios M. . ( 2014;). Evaluation of seven housekeeping genes for multilocus sequence analysis of the genus Mesorhizobium: resolving the taxonomic affiliation of the Cicer canariense rhizobia. Syst Appl Microbiol 37: 553––559 [CrossRef] [PubMed].
-
Pitcher D. G. , Saunders N. A. , Owen R. J. . ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8: 151––156 [CrossRef].
-
Posada D. , Crandall K. A. . ( 1998;). modeltest: testing the model of DNA substitution. Bioinformatics 14: 817––818 [CrossRef] [PubMed].
-
Rajendhran J. , Gunasekaran P. . ( 2011;). Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166: 99––110 [CrossRef] [PubMed].
-
Rincón-Rosales R. , Lloret L. , Ponce E. , Martínez-Romero E. . ( 2009;). Rhizobia with different symbiotic efficiencies nodulate Acaciella angustissima in Mexico, including Sinorhizobium chiapanecum sp. nov. which has common symbiotic genes with Sinorhizobium mexicanum . FEMS Microbiol Ecol 67: 103––117 [CrossRef] [PubMed].
-
Rivas R. , García-Fraile P. , Velázquez E. . ( 2009;). Taxonomy of bacteria nodulating legumes. Microbiol Insights 2: 51––69.
-
Rosselló-Mora R. , Amann R. . ( 2001;). The species concept for prokaryotes. FEMS Microbiol Rev 25: 39––67 [CrossRef] [PubMed].
-
Rosselló-Mora R. , Stackebrandt E. . ( 2006;). DNA–DNA reassociation methods applied to microbial taxonomy and their critical evaluation. . In Molecular Identification, Systematics, and Population Structure of Prokaryotes, pp. 23––50. Edited by Stackebrandt E. . Berlin & Heidelberg:: Springer; [CrossRef]
-
Soler L. , Yáñez M. A. , Chacon M. R. , Aguilera-Arreola M. G. , Catalán V. , Figueras M. J. , Martínez-Murcia A. J. . ( 2004;). Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes. Int J Syst Evol Microbiol 54: 1511––1519 [CrossRef] [PubMed].
-
Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 8: 6––9.
-
Stackebrandt E. , Liesack W. . ( 1993;). Nucleic acids and classification. . In Handbook of New Bacterial Systematics, pp. 151––194. Edited by Goodfellow M. , O'Donnell A. G. . New York: Academic Press;.
-
Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. D. , Kämpfer P. , Maiden M. C. J. , Nesme X. , Rosselló-Mora R. , Swings J. , other authors . ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52: 1043––1047 [PubMed].
-
Stępkowski T. , Czaplińska M. , Miedzinska K. , Moulin L. . ( 2003;). The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria . Syst Appl Microbiol 26: 483––494 [CrossRef] [PubMed].
-
Vincent J. . ( 1970;). A Manual for the Practical Study of the Root Nodule Bacteria Oxford: Blackwell Science;.
-
Vinuesa P. , Silva C. , Lorite M. J. , Izaguirre-Mayoral M. L. , Bedmar E. J. , Martínez-Romero E. . ( 2005;). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA, nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28: 702––716 [CrossRef] [PubMed].
-
Wang E. T. , van Berkum P. , Sui X. H. , Beyene D. , Chen W. X. , Martínez-Romero E. . ( 1999;). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49: 51––65 [CrossRef] [PubMed].
-
Yarza P. , Yilmaz P. , Pruesse E. , Glöckner F. O. , Ludwig W. , Schleifer K. H. , Whitman W. B. , Euzéby J. , Amann R. , Rosselló-Móra R. . ( 2014;). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12: 635––645 [CrossRef] [PubMed].
-
Youseif S. H. , Abd El-Megeed F. H. , Ageez A. , Cocking E. C. , Saleh S. A. . ( 2014;). Phylogenetic multilocus sequence analysis of native rhizobia nodulating faba bean (Vicia faba L.) in Egypt. Syst Appl Microbiol 37: 560––569 [CrossRef] [PubMed].
-
Zeigler D. R. . ( 2003;). Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53: 1893––1900 [CrossRef] [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.000862dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.000862dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....