- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 66, Issue 3
- Article

f Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family Desulfarculaceae
- Authors: Irene A. Davidova1,2 , Boris Wawrik1 , Amy V. Callaghan1 , Kathleen Duncan1,2 , Christopher R. Marks1,2 , Joseph M. Suflita1,2
-
- VIEW AFFILIATIONS
-
1 1Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK 73019, USA 2 2Institute for Energy and the Environment, The University of Oklahoma, 100 East Boyd Street, Room 1510, Norman, OK 73019-1015, USA
- Correspondence Joseph M. Suflita [email protected]
- First Published Online: 01 March 2016, International Journal of Systematic and Evolutionary Microbiology 66: 1242-1248, doi: 10.1099/ijsem.0.000864
- Subject: NEW TAXA - Proteobacteria
- Cover date:




Dethiosulfatarculus sandiegensis gen. nov., sp. nov., isolated from a methanogenic paraffin-degrading enrichment culture and emended description of the family Desulfarculaceae, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/66/3/1242_ijsem000864-1.gif
-
A mesophilic deltaproteobacterium, designated strain SPRT, was isolated from a methanogenic consortium capable of degrading long-chain paraffins. Cells were motile, vibrio-shaped, and occurred singly, in pairs or in clusters. Strain SPRT did not metabolize hydrocarbons but grew fermentatively on pyruvate and oxaloacetate and autotrophically with H2 and CO2. Thiosulfate served as a terminal electron acceptor, but sulfate or sulfite did not. The organism required at least 10 g NaCl l− 1 and a small amount of yeast extract (0.001%) for growth. Optimal growth was observed between 30 and 37 °C and a pH range from 6.0 to 7.2. The DNA G+C content of SPRT's genome was 52.02 mol%. Based on 16S rRNA gene sequence analysis, strain SPRT was distinct from previously described Deltaproteobacteria, exhibiting the closest affiliation to Desulfarculus baarsii DSM 2075T and Desulfocarbo indianensis SCBMT, with only 91% similarity between their respective 16S gene sequences. In silico genome comparison supported the distinctiveness between strain SPRT and both Desulfocarbo indianensis SCBMT and Desulfarculus baarsii DSM 2075T. Based on physiological differences, as well as phylogenetic and genomic comparisons, we propose to classify SPRT as the type strain ( = DSM 100305T = JCM 30857T) of a novel species of a new genus with the name Dethiosulfatarculus sandiegensis gen. nov., sp. nov.
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Dethiosulfatarculus sandiegensis SPRT is KP868755. The draft genome assembly is available under GenBank accession number AZAC00000000.
-
One supplementary figure and two supplementary tables are available with the online Supplementary Material.
© 2015 IUMS | Published by the Microbiology Society
-
An T. T., Picardal F. W.. ( 2014;). Desulfocarbo indianensis gen. nov., sp. nov., a benzoate-oxidizing, sulfate-reducing bacterium isolated from water extracted from a coal bed. Int J Syst Evol Microbiol 64: 2907––2914 [CrossRef] [PubMed].
-
Anderson R. T., Lovley D. R.. ( 2000;). Hexadecane decay by methanogenesis. Nature 404: 722––723 [CrossRef] [PubMed].
-
Auch A. F., von Jan M., Klenk H.-P., Göker M.. ( 2010;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2: 117––134 [CrossRef] [PubMed].
-
Boetzer M., Henkel C. V., Jansen H. J., Butler D., Pirovano W.. ( 2011;). Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27: 578––579 [CrossRef] [PubMed].
-
Caldwell M. E., Garrett R. M., Prince R. C., Suflita J. M.. ( 1998;). Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ Sci Technol 32: 2191––2195 [CrossRef].
-
Callaghan A. V., Davidova I. A., Savage-Ashlock K., Parisi V. A., Gieg L. M., Suflita J. M., Kukor J. J., Wawrik B.. ( 2010;). Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environ Sci Technol 44: 7287––7294 [CrossRef] [PubMed].
-
Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., Brown C. T., Porras-Alfaro A., Kuske C. R., Tiedje J. M.. ( 2014;). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42: (D1), D633––D642 [CrossRef] [PubMed].
-
Davidova I. A., Callaghan A. V., Duncan K. E., Sunner J., Biri B., Wawrik B., Suflita J. M.. ( 2011;). Long-chain paraffin metabolism by a methanogenic bacterial consortium enriched from marine sediments (poster presentation). . In Proceedings of the 8th International Symposium of Subsurface Microbiology (ISSM-8) Garmisch-Partenkirchen; Germany. S7-P3; p.66:.
-
Davidova I. A., Duncan K. E., Perez-Ibarra B. M., Suflita J. M.. ( 2012;). Involvement of thermophilic archaea in the biocorrosion of oil pipelines. Environ Microbiol 14: 1762––1771 [CrossRef] [PubMed].
-
Embree M., Nagarajan H., Movahedi N., Chitsaz H., Zengler K.. ( 2014;). Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community. ISME J 8: 757––767 [CrossRef] [PubMed].
-
Foght J.. ( 2008;). Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15: 93––120 [CrossRef] [PubMed].
-
Fuchs G.. ( 2008;). Anaerobic metabolism of aromatic compounds. Ann N Y Acad Sci 1125: 82––99 [CrossRef] [PubMed].
-
Gieg L. M., Duncan K. E., Suflita J. M.. ( 2008;). Bioenergy production via microbial conversion of residual oil to natural gas. Appl Environ Microbiol 74: 3022––3029 [CrossRef] [PubMed].
-
Gottschalk G., Barker H. A.. ( 1966;). Synthesis of glutamate and citrate by Clostridium kluyveri. A new type of citrate synthase. Biochemistry 5: 1125––1133 [CrossRef] [PubMed].
-
Gray N. D., Sherry A., Grant R. J., Rowan A. K., Hubert C. R., Callbeck C. M., Aitken C. M., Jones D. M., Adams J. J., other authors. ( 2011;). The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ Microbiol 13: 2957––2975 [CrossRef] [PubMed].
-
Jansen K., Thauer R. K., Widdel F., Fuchs G.. ( 1984;). Carbon assimilation pathways in sulfate reducing bacteria: formate, carbon-dioxide, carbon-monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol 138: 257––262 [CrossRef].
-
Kämpfer P., Glaeser S. P.. ( 2012;). Prokaryotic taxonomy in the sequencing era - the polyphasic approach revisited. Environ Microbiol 14: 291––317 [CrossRef] [PubMed].
-
Kim M., Le H., McInerney M. J., Buckel W.. ( 2013;). Identification and characterization of re-citrate synthase in Syntrophus aciditrophicus. J Bacteriol 195: 1689––1696 [CrossRef] [PubMed].
-
Kuever J., Rainey F. A., Widdel F.. ( 2005;). Order IV Desulfarcales ord. nov. Family I Desulfarculaceae fam. nov. . In Bergey's Manual of Systematic Bacteriology, pp. 1003––1005. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;.
-
Li F., Hagemeier C. H., Seedorf H., Gottschalk G., Thauer R. K.. ( 2007;). Re-citrate synthase from Clostridium kluyveri is phylogenetically related to homocitrate synthase and isopropylmalate synthase rather than to Si-citrate synthase. J Bacteriol 189: 4299––4304 [CrossRef] [PubMed].
-
Miller C. S., Baker B. J., Thomas B. C., Singer S. W., Banfield J. F.. ( 2011;). emirge: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol 12: R44 [CrossRef] [PubMed].
-
Nakatsu C. H., Marsh T. L.. ( 2007;). Analysis of microbial communities with denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism. . In Methods for General and Molecular Microbiology, 3rd edn.., pp. 909––923. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC:: American Society for Microbiology; [CrossRef].
-
Pires R. H., Lourenço A. I., Morais F., Teixeira M., Xavier A. V., Saraiva L. M., Pereira I. A. C.. ( 2003;). A novel membrane-bound respiratory complex from Desulfovibrio desulfuricans ATCC 27774. Biochim Biophys Acta 1605: 67––82 [CrossRef] [PubMed].
-
Qin Q. L., Xie B. B., Zhang X. Y., Chen X. L., Zhou B. C., Zhou J., Oren A., Zhang Y. Z.. ( 2014;). A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 196: 2210––2215 [CrossRef] [PubMed].
-
Siddique T., Fedorak P. M., Foght J. M.. ( 2006;). Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environ Sci Technol 40: 5459––5464 [CrossRef] [PubMed].
-
Siddique T., Penner T., Semple K., Foght J. M.. ( 2011;). Anaerobic biodegradation of longer-chain n-alkanes coupled to methane production in oil sands tailings. Environ Sci Technol 45: 5892––5899 [CrossRef] [PubMed].
-
Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152.
-
Sun H., Spring S., Lapidus A., Davenport K., Del Rio T. G., Tice H., Nolan M., Copeland A., Cheng J. F., other authors. ( 2010;). Complete genome sequence of Desulfarculus baarsii type strain (2st14T). Stand Genomic Sci 3: 276––284 [CrossRef] [PubMed].
-
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0.Mol Biol Evol 30: 2725––2729 [CrossRef] [PubMed].
-
Townsend G. T., Prince R. C., Suflita J. M.. ( 2003;). Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37: 5213––5218 [CrossRef] [PubMed].
-
Trüper H. G., Schlegel H. G.. ( 1964;). Sulphur metabolism in Thiorhodaceae 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30: 225––238 [CrossRef] [PubMed].
-
Widdel F., Bak F.. ( 1992;). Gram-negative mesophilic sulfate-reducing bacteria. . In The Prokaryotes, pp. 3352––3378. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: [CrossRef] Springer;.
-
Zengler K., Richnow H. H., Rosselló-Mora R., Michaelis W., Widdel F.. ( 1999;). Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266––269 [CrossRef] [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.000864dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.000864dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....