1887

Abstract

A Gram-stain-negative, aerobic, motile and rod-shaped bacterial strain, designated RA2-7, was isolated from a mussel () collected from the South Sea, South Korea, and subjected to a taxonomic study using a polyphasic approach. Strain RA2-7 grew optimally at 20 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain RA2-7 belonged to the genus . Strain RA2-7 exhibited 16S rRNA gene sequence similarity values of 98.3, 98.0 and 97.5 % to the type strains of , and , respectively, and of 94.5–96.5 % to the type strains of the other species of the genus . Strain RA2-7 contained Q-8 as the predominant ubiquinone and summed feature 3 (C 7 and/or C 6) and C as the major fatty acids. The major polar lipids detected in strain RA2-7 were phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content of strain RA2-7 was 39.0±0.04 mol% and its DNA–DNA relatedness values with the type strains of . , and were 14–19 %. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain RA2-7 is separated from recognized species of the genus . On the basis of the data presented, strain RA2-7 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RA2-7 (=KCTC 52417=NBRC 112381).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001564
2017-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/31.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001564&mimeType=html&fmt=ahah

References

  1. Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT. Isolation of an obligately barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst Appl Microbiol 1988; 10:152–160 [View Article]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  3. Park S, Jung YT, Yoon JH. Colwellia sediminilitoris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:3258–3263 [View Article][PubMed]
    [Google Scholar]
  4. Bowman JP, Gosink JJ, Mccammon SA, Lewis TE, Nichols DS et al. Colwellia demingiae sp. nov., Colwellia hornerae sp. nov., Colwellia rossensis sp. nov. and Colwellia psychrotropica sp. nov.: psychrophilic Antarctic species with the ability to synthesize docosahexaenoic acid (22 : 6ω3). Int J Syst Bacteriol 1998; 48:1171–1180 [View Article]
    [Google Scholar]
  5. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000; 50:1563–1589 [View Article][PubMed]
    [Google Scholar]
  6. Jung SY, Oh TK, Yoon JH. Colwellia aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 2006; 56:33–37 [View Article][PubMed]
    [Google Scholar]
  7. Choi EJ, Kwon HC, Koh HY, Kim YS, Yang HO. Colwellia asteriadis sp. nov., a marine bacterium isolated from the starfish Asterias amurensis. Int J Syst Evol Microbiol 2010; 60:1952–1957 [View Article][PubMed]
    [Google Scholar]
  8. Yu Y, Li HR, Zeng YX. Colwellia chukchiensis sp. nov., a psychrotolerant bacterium isolated from the Arctic Ocean. Int J Syst Evol Microbiol 2011; 61:850–853 [View Article][PubMed]
    [Google Scholar]
  9. Kim YO, Park S, Nam BH, Jung YT, Kim DG et al. Colwellia meonggei sp. nov., a novel gammaproteobacterium isolated from sea squirt Halocynthia roretzi. Antonie Van Leeuwenhoek 2013; 104:1021–1027 [View Article][PubMed]
    [Google Scholar]
  10. Liu Y, Liu LZ, Zhong ZP, Zhou YG, Liu Y et al. Colwellia aquaemaris sp. nov., isolated from the Cynoglossus semilaevis culture tank in a recirculating mariculture system. Int J Syst Evol Microbiol 2014; 64:3926–3930 [View Article][PubMed]
    [Google Scholar]
  11. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  12. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67 [CrossRef]
    [Google Scholar]
  13. Barrow G I, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993[PubMed] [CrossRef]
    [Google Scholar]
  14. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  15. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. (editors) The Prokaryotes Berlin: Springer; 19811302–1331
    [Google Scholar]
  16. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942[PubMed]
    [Google Scholar]
  17. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article][PubMed]
    [Google Scholar]
  18. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46:502–505 [View Article]
    [Google Scholar]
  19. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998; 48:187–194 [View Article][PubMed]
    [Google Scholar]
  20. Yoon JH, Kang KH, Park YH. Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2003; 53:449–454 [View Article][PubMed]
    [Google Scholar]
  21. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [CrossRef]
    [Google Scholar]
  23. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994121–161
    [Google Scholar]
  26. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  27. Zhang DC, Yu Y, Xin YH, Liu HC, Zhou PJ et al. Colwellia polaris sp. nov., a psychrotolerant bacterium isolated from Arctic sea ice. Int J Syst Evol Microbiol 2008; 58:1931–1934 [View Article][PubMed]
    [Google Scholar]
  28. Yumoto I, Kawasaki K, Iwata H, Matsuyama H, Okuyama H. Assignment of Vibrio sp. strain ABE-1 to Colwellia maris sp. nov., a new psychrophilic bacterium. Int J Syst Bacteriol 1998; 48:1357–1362 [View Article][PubMed]
    [Google Scholar]
  29. Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol 2004; 54:1627–1631 [View Article][PubMed]
    [Google Scholar]
  30. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E, Goebel BM. Taxonomic note: A place for DNA-DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001564
Loading
/content/journal/ijsem/10.1099/ijsem.0.001564
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error