- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 5
- Article

f Williamsia spongiae sp. nov., an actinomycete isolated from the marine sponge Amphimedon viridis
- Authors: Cláudia Beatriz Afonso de Menezes1,2 , Rafael Sanches Afonso1 , Wallace Rafael de Souza3 , Márcia Parma3 , Itamar Soares de Melo3 , Tiago Domingues Zucchi3,4 , Fabiana Fantinatti-Garboggini1,2
-
- VIEW AFFILIATIONS
-
1 1Centro Pluridisciplinar de Pesquisas Químicas Biológicas e Agrícolas, UNICAMP, Av. Alexandre Cazelatto 999, CEP 13148-218, Paulínia, SP, Brazil 2 2Programa de Pós-Graduação em Genética e Biologia Molecular, UNICAMP, CP 6109, 13083-970, Campinas, SP, Brazil 3 3Embrapa Meio Ambiente, Rodovia SP 340 Km 127.5, CP 69, CEP 13820-000, Jaguariúna, SP, Brazil 4 4Agrivalle – Biotecnologia Agrícola, Rua Moisés Lopes Silva 50, CEP 37550-000, Pouso Alegre, MG, Brazil
- *Correspondence: Fabiana Fantinatti-Garboggini, [email protected]
- First Published Online: 30 May 2017, International Journal of Systematic and Evolutionary Microbiology 67: 1260-1265, doi: 10.1099/ijsem.0.001796
- Subject: New Taxa - Actinobacteria
- Received:
- Accepted:
- Cover date:




Williamsia spongiae sp. nov., an actinomycete isolated from the marine sponge Amphimedon viridis, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/5/1260_ijsem001796-1.gif
-
A novel actinobacterium, designated isolate B138T, was isolated from the marine sponge, Amphimedon viridis, which was collected from Praia Guaecá (São Paulo, Brazil), and its taxonomic position was established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological characteristics consistent with its classification in the genus Williamsia and it formed a distinct phyletic line in the Williamsia 16S rRNA gene tree. It was most closely related to Williamsia serinedens DSM 45037T and Williamsia deligens DSM 44902T (99.0 % 16S rRNA gene sequence similarity) and Williamsia maris DSM 44693T (97.5 % 16S rRNA gene sequence similarity), but was distinguished readily from these strains by the low DNA–DNA relatedness values (62.3–64.4 %) and by the discriminatory phenotypic properties. Based on the data obtained, the isolate B138T (=CBMAI 1094T=DSM 46676T) should be classified as the type strain of a novel species of the genus Williamsia , for which the name Williamsia spongiae sp. nov. is proposed.
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA sequence of Williamsia spongiae B138T (=CBMAI 1094T =DSM 46676T) is JN615440.
-
Four supplementary figures are available with the online Supplementary Material.
- Keyword(s): marine sponge, Polyphasic taxonomy, São Paulo state, Williamsia spongiae
© 2017 IUMS | Published by the Microbiology Society
-
1. Kämpfer P, Andersson MA, Rainey FA, Kroppenstedt RM, Salkinoja-Salonen M. Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children's day care centre. Int J Syst Bacteriol 1999;49:681–687 [CrossRef][PubMed]
-
2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
-
3. Goodfellow M, Alderson G, Chun J. Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek 1998;74:3–20[PubMed][CrossRef]
-
4. Goodfellow M, Isik K, Yates E. Actinomycete systematics: an unfinished synthesis. Nova Acta Leopold 1999;312:47–82
-
5. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59:589–608 [CrossRef][PubMed]
-
6. Lechevalier MP, de Biévre C, Lechevalier HA. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Ecol Syst 1977;5:249–260[CrossRef]
-
7. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (No. 20 SAB Technical Series) London: Academic Press; 1985; pp.173–199
-
8. Stach JE, Maldonado LA, Ward AC, Bull AT, Goodfellow M. Williamsia maris sp. nov., a novel actinomycete isolated from the sea of Japan. Int J Syst Evol Microbiol 2004;54:191–194 [CrossRef][PubMed]
-
9. Yassin AF, Hupfer H. Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol 2006;56:193–197 [CrossRef][PubMed]
-
10. Yassin AF, Young CC, Lai WA, Hupfer H, Arun AB et al. Williamsia serinedens sp. nov., isolated from an oil-contaminated soil. Int J Syst Evol Microbiol 2007;57:558–561 [CrossRef][PubMed]
-
11. Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K et al. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 2006;56:1123–1126 [CrossRef][PubMed]
-
12. Jones AL, Payne GD, Goodfellow M. Williamsia faeni sp. nov., an actinomycete isolated from a hay meadow. Int J Syst Evol Microbiol 2010;60:2548–2551 [CrossRef][PubMed]
-
13. Kämpfer P, Wellner S, Lohse K, Lodders N, Martin K. Williamsia phyllosphaerae sp. nov., isolated from the surface of Trifolium repens leaves. Int J Syst Evol Microbiol 2011;61:2702–2705 [CrossRef][PubMed]
-
14. Sazak A, Sahin N. Williamsia limnetica sp. nov., isolated from a limnetic lake sediment. Int J Syst Evol Microbiol 2012;62:1414–1418 [CrossRef][PubMed]
-
15. Fang XM, Su J, Wang H, Wei YZ, Zhang T et al. Williamsia sterculiae sp. nov., isolated from a Chinese medicinal plant. Int J Syst Evol Microbiol 2013;63:4158–4162 [CrossRef][PubMed]
-
16. Menezes CB, Bonugli-Santos RC, Miqueletto PB, Passarini MR, Silva CH et al. Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state, Brazil. Microbiol Res 2010;165:466–482 [CrossRef][PubMed]
-
17. Shirling E, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340[CrossRef]
-
18. van Soolingen D, de Haas PE, Hermans PW, Groenen PM, van Embden JD. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 1993;31:1987–1995[PubMed]
-
19. de Menezes CB, Tonin MF, Silva LJ, de Souza WR, Parma M et al. Marmoricola aquaticus sp. nov., an actinomycete isolated from a marine sponge. Int J Syst Evol Microbiol 2015;65:2286–2291 [CrossRef][PubMed]
-
20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
-
21. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
-
22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376[PubMed][CrossRef]
-
23. Fitch WM. Toward defining the course of evolution: minimum change for specific tree topology. Syst Biol 1971;20:406–416[CrossRef]
-
24. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:404–425
-
25. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp.21–123[CrossRef]
-
26. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526[PubMed]
-
27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791[CrossRef]
-
28. Gonzalez JM, Saiz-Jimenez C. A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 2005;9:75–79 [CrossRef][PubMed]
-
29. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][CrossRef]
-
30. Gordon RE, Mihm JM. The type species of the genus Nocardia. J Gen Microbiol 1962;27:1–10 [CrossRef][PubMed]
-
31. Kim BY, Stach JE, Weon HY, Kwon SW, Goodfellow M. Dactylosporangium luridum sp. nov., Dactylosporangium luteum sp. nov. and Dactylosporangium salmoneum sp. nov., nom. rev., isolated from soil. Int J Syst Evol Microbiol 2010;60:1813–1823 [CrossRef][PubMed]
-
32. Lee DW, Lee SD. Marmoricola scoriae sp. nov., isolated from volcanic ash. Int J Syst Evol Microbiol 2010;60:2135–2139 [CrossRef][PubMed]
-
33. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Environ Microbiol 1974;28:226–231
-
34. Uchida K, Kudo T, Suzuki KI, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999;45:49–56 [CrossRef][PubMed]
-
35. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoidquinones and polar lipids. J Microbiol Methods 1984;2:233–241[CrossRef]
-
36. Schaal KP. Identification of clinically significant actinomycetes and related bacteria using chemical techniques. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.359–381
-
37. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975;88:200–204 [CrossRef][PubMed]
-
38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Tech Note 101. Newark, DE: MIDI Inc; 1990
-
39. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
-
40. Stackebrandt E, Smida J, Collins MD. Evidence of phylogenetic heterogeneity within the genus Rhodococcus: revival of the genus Gordona (Tsukamura). J Gen Appl Microbiol 1988;34:341–348 [CrossRef]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.001796dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.001796dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....