- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 6
- Article

f Sphingopyxis solisilvae sp. nov., isolated from forest soil
- Authors: Dhiraj Kumar Chaudhary1 , Ram Hari Dahal1 , Jaisoo Kim1
-
- VIEW AFFILIATIONS
-
1 Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
- *Correspondence: Jaisoo Kim, [email protected]
- First Published Online: 14 June 2017, International Journal of Systematic and Evolutionary Microbiology 67: 1820-1826, doi: 10.1099/ijsem.0.001869
- Subject: New Taxa - Proteobacteria
- Received:
- Accepted:
- Cover date:




Sphingopyxis solisilvae sp. nov., isolated from forest soil, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/6/1820_ijsem001869-1.gif
-
A yellow-coloured, Gram-staining-negative, motile and rod shaped bacterium, designated strain R366T, was isolated from forest soil of Kyonggi University, South Korea. It was able to grow at 15–42 °C, pH 6.0–10.0 and with 0–4 % (w/v) NaCl concentration. Based on the 16S rRNA gene sequence analysis, strain R366T belongs to the genus Sphingopyxis and is closely related to Sphingopyxis italica SC13E-S71T (98.72 % sequence similarity), Sphingopyxis chilensis S37T (98.51 %), Sphingopyxis fribergensis Kp5.2T (98.29 %), Sphingopyxis alaskensis RB2256T (98.15 %), Sphingopyxis ginsengisoli Gsoli 250T (98.15 %) and Sphingopyxis taejonensis JSS54T (98.01 %). The predominant respiratory quinone was ubiquinone-10, and the major polyamine was spermidine. The polar lipid profile revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, phosphatidylmonomethylethanolamine and sphingoglycolipid. The predominant fatty acids of strain R366T were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C17 : 1ω6c, C16 : 0, C18 : 1ω7c 11-methyl and C14 : 0 2-OH. The genomic DNA G+C content of this novel strain was 65.1 mol%. The DNA–DNA relatedness between strain R366T and Sphingopyxis italica DSM 25229T, Sphingopyxis chilensis KCCM 41918T, Sphingopyxis alaskensis KCCM 41983T, Sphingopyxis ginsengisoli KACC 13918T and Sphingopyxis taejonensis KACC 12341T was 51.7, 45.3, 39.0, 41.3 and 44.7 %, respectively. The morphological, physiological, chemotaxonomic and phylogenetic analyses clearly distinguished this strain from its closest phylogenetic neighbours. Thus, strain R366T represents a novel species of the genus Sphingopyxis , for which the name Sphingopyxis solisilvae sp. nov. is proposed. The type strain is R366T (=KEMB 9005-451T=KACC 19003T=JCM 31675T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain R366T is KX672815.
-
One supplementary figure is available with the online Supplementary Material.
© 2017 IUMS | Published by the Microbiology Society
-
1. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
-
2. Maruyama T, Park HD, Ozawa K, Tanaka Y, Sumino T et al. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 2006;56:85–89 [CrossRef][PubMed]
-
3. Alias-Villegas C, Jurado V, Laiz L, Saiz-Jimenez C. Sphingopyxis italica sp. nov., isolated from roman catacombs. Int J Syst Evol Microbiol 2013;63:2565–2569 [CrossRef][PubMed]
-
4. Godoy F, Vancanneyt M, Martínez M, Steinbüchel A, Swings J et al. Sphingopyxis chilensis sp. nov., a chlorophenol-degrading bacterium that accumulates polyhydroxyalkanoate, and transfer of Sphingomonas alaskensis to Sphingopyxis alaskensis comb. nov. Int J Syst Evol Microbiol 2003;53:473–477 [CrossRef][PubMed]
-
5. Lee M, Ten LN, Lee HW, Oh HW, Im WT et al. Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2008;58:2342–2347 [CrossRef][PubMed]
-
6. Verma H, Rani P, Kumar Singh A, Kumar R, Dwivedi V et al. Sphingopyxis flava sp. nov., isolated from a hexachlorocyclohexane (HCH)-contaminated soil. Int J Syst Evol Microbiol 2015;65:3720–3726 [CrossRef][PubMed]
-
7. Kim BS, Lim YW, Chun J. Sphingopyxis marina sp. nov. and Sphingopyxis litoris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008;58:2415–2419 [CrossRef][PubMed]
-
8. Choi JH, Kim MS, Jung MJ, Roh SW, Shin KS et al. Sphingopyxis soli sp. nov., isolated from landfill soil. Int J Syst Evol Microbiol 2010;60:1682–1686 [CrossRef][PubMed]
-
9. Chaudhary DK, Kim J. Novosphingobium naphthae sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol 2016;66:3170–3176 [CrossRef][PubMed]
-
10. Dahal RH, Kim J. Rhabdobacter roseus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016;66:308–314 [CrossRef][PubMed]
-
11. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
-
12. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461–2470 [CrossRef][PubMed]
-
13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
-
14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
-
15. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
-
16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
-
17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
-
18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
-
19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
-
20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
-
21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
-
22. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Washington DC. (editors) Manual of Methods for General Bacteriology USA: American Society for Microbiology; 1981; pp.21–33
-
23. Powers EM. Efficacy of the ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758[PubMed]
-
24. Chaudhary DK, Kim J. Arvibacter flaviflagrans gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016;66:4347–4354 [CrossRef][PubMed]
-
25. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp.309–329
-
26. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA et al. Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol 2014;64:594–598 [CrossRef][PubMed]
-
27. Hemraj V, Diksha S, Avneet G. A review on commonly used biochemical test for bacteria. Innovare J Life Sci 2013;1:1–7
-
28. Chaudhary DK, Kim J. Sphingomonas naphthae sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2016;66:4621–4627 [CrossRef][PubMed]
-
29. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
-
30. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994; pp.607–654
-
31. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
-
32. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Parasegetibacter terrae sp. nov., isolated from paddy soil and emended description of the genus Parasegetibacter. Int J Syst Evol Microbiol 2015;65:113–116 [CrossRef][PubMed]
-
33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
-
34. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
-
35. Komagata K, Suzuki K. Lipids and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–203[CrossRef]
-
36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
-
37. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]
-
38. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
-
39. Stolz A, Busse HJ, Kämpfer P. Pseudomonas Knackmussii sp. nov. Int J Syst Evol Microbiol 2007;57:572–576 [CrossRef][PubMed]
-
40. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by High-Performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
-
41. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
-
42. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree Project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
-
43. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
-
44. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
-
45. Vancanneyt M, Schut F, Snauwaert C, Goris J, Swings J et al. Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 2001;51:73–79 [CrossRef][PubMed]
-
46. Pal R, Bhasin VK, Lal R. Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. Int J Syst Evol Microbiol 2006;56:667–670 [CrossRef][PubMed]
-
47. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR et al. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 2001;51:1491–1498 [CrossRef][PubMed]
-
48. Oelschlägel M, Rückert C, Kalinowski J, Schmidt G, Schlömann M et al. Sphingopyxis fribergensis sp. nov., a soil bacterium with the ability to degrade styrene and phenylacetic acid. Int J Syst Evol Microbiol 2015;65:3008–3015 [CrossRef][PubMed]
-
49. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993;16:227–238 [CrossRef]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.001869dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.001869dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....