- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 9
- Article

f Microbacterium hibisci sp. nov., isolated from rhizosphere of mugunghwa (Hibiscus syriacus L.)
- Authors: Zheng-Fei Yan1 , Pei Lin1 , Kyung-Hwa Won1 , Jung-Eun Yang1 , Chang-Tian Li2 , MooChang Kook3 , Qi-Jun Wang4 , Tae-Hoo Yi1
-
- VIEW AFFILIATIONS
-
1 1Department of Oriental Medicinal Material and Processing, College of Life Sciences, Kyung Hee University Global Campus, 1732 Deokyoungdae-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea 2 2Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China 3 3Department of Food Nutrition, Baewha Women’s University, Seoul 03039, Republic of Korea 4 4College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
- *Correspondence: Tae-Hoo Yi, [email protected]
- First Published Online: 06 September 2017, International Journal of Systematic and Evolutionary Microbiology 67: 3564-3569, doi: 10.1099/ijsem.0.002167
- Subject: New taxa
- Received:
- Accepted:
- Cover date:




Microbacterium hibisci sp. nov., isolated from rhizosphere of mugunghwa (Hibiscus syriacus L.), Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/9/3564_ijsem002167-1.gif
-
A Gram-stain-positive, aerobic, non-motile, short-rod shaped actinobacterium, designated THG-T2.14T, was isolated from soil sampled from the rhizosphere of mugunghwa. Growth occurred at 10–40 °C (optimum 30 °C), at pH 5.0–10.0 (optimum 7.0) and at 0–7.0 % NaCl (optimum 3.0 %). Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain THG-T2.14T were identified as Microbacterium yannicii DSM 23203T (98.8 %), Microbacterium trichothecenolyticum DSM 8608T (98.8 %), Microbacterium arthrosphaerae DSM 22421T (98.7 %) and Microbacterium jejuense KACC 17124T (98.4 %). The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unidentified lipid, two unidentified phospholipids and two unidentified phosphoglycolipids. The menaquinones were MK-12, and MK-13. The major polyamine was spermidine. The peptidoglycan contained ornithine, alanine, glycine, homoserine and glutamic acid. The diagnostic diamino acid was ornithine. The acyl type of the muramic acid was glycolyl. The whole-cell sugars were rhamnose, ribose, galactose, arabinose, xylose and glucose. The DNA G+C content of strain THG-T2.14T was 71.2 mol%. The DNA–DNA relatedness between strain THG-T2.14T and its closest reference strains were significantly lower than the threshold value of 70 %. On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA–DNA hybridization data, strain THG-T2.14T represents a novel species of the genus Microbacterium , for which the name Microbacterium hibisci sp. nov. is proposed. The type strain is THG-T2.14T (=KACC 18931T=CCTCC AB 2016180T).
-
The NCBI GenBank accession number for the 16S rRNA gene sequence of strain THG-T2.14T is KX456190.
-
Two supplementary tables and two supplementary figures are available with the online Supplementary Material.
- Keyword(s): mugunghwa, Microbacterium hibisci, rhizosphere
© 2017 IUMS | Published by the Microbiology Society
-
1. Orla-Jensen S. The Lactic Acid Bacteria Copenhagen: Høst & Sons; 1919
-
2. Collins MD, Jones D, Kroppenstedt RM. Reclassification of Brevibacterium imperiale (Steinhaus) and "Corynebacterium laevaniformans" (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov. Syst Appl Microbiol 1983;4:65–78 [CrossRef][PubMed]
-
3. Takeuchi M, Hatano K. Union of the genera microbacterium orla-jensen and aureobacterium collins et al. in a redefined genus microbacterium. Int J Syst Bacteriol 1998;48:739–747 [CrossRef]
-
4. Kook M, Son HM, Yi TH, Th Y. Microbacterium kyungheense sp. nov. and Microbacterium jejuense sp. nov., isolated from salty soil. Int J Syst Evol Microbiol 2014;64:2267–2273 [CrossRef][PubMed]
-
5. Karojet S, Kunz S, van Dongen JT. Microbacterium yannicii sp. nov., isolated from Arabidopsis thaliana roots. Int J Syst Evol Microbiol 2012;62:822–826 [CrossRef][PubMed]
-
6. Kämpfer P, Rekha PD, Schumann P, Arun AB, Young CC et al. Microbacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna attems. Int J Syst Evol Microbiol 2011;61:1334–1337 [CrossRef][PubMed]
-
7. Suzuki KI, Hamada M. et al. Genus I. Microbacterium. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K I, Ludwig W, Whitman WB. (editors) Bergey's Manual of Systematic Bacteriology, Second ed.Vol. 5 New York, NY: Springer; 2012; pp.814–852[CrossRef]
-
8. Alves A, Correia A, Igual JM, Trujillo ME. Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. Syst Appl Microbiol 2014;37:474–479 [CrossRef][PubMed]
-
9. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16s ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
-
10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: [CrossRef][PubMed]
-
11. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
-
12. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
-
13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
-
14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
-
15. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969;18:1–32 [CrossRef]
-
16. Yap Iv NRJ. WinBoot: A Program for Performing Bootstrap Analysis of Binary Data to Determine the Confidence Limits of UPGMA-Based Dendrograms Manila: International Rice Research Institute; 1996; pp.1–22
-
17. Buck JD, Nonstaining BJD. Nonstaining (KOH) method for determination of gram reactions of marine Bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
-
18. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
-
19. Yan ZF, Trinh H, Moya G, Lin P, Li CT, Ct L et al. Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the nationalflower of South Korea. Int J Syst Evol Microbiol 2016;66:4754–4759 [CrossRef][PubMed]
-
20. Yan ZF, Lin P, Chu X, Kook M, Li CT, Ct L et al. Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 2016;198:423–427 [CrossRef][PubMed]
-
21. Adékambi T, Berger P, Raoult D, Drancourt M. rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 2006;56:133–143 [CrossRef][PubMed]
-
22. NCCL Susceptibility testing Mycobacteria, Nocardia. And Other Aerobic Actinomycetes: Tentative Standard 2000
-
23. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
-
24. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
-
25. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A et al. Epibiotic Vibrio luminous Bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 2008;56:625–636 [CrossRef][PubMed]
-
26. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463464
-
27. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
-
28. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980;48:459–470 [CrossRef]
-
29. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical note 101. Newark, DE: MIDI Inc 1990
-
30. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
-
31. Hu HY, Lim BR, Goto N, Fujie K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 2001;47:17–24[PubMed][CrossRef]
-
32. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion Exchanger as Stationary Phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
-
33. Chen YG, Tang SK, Zhang YQ, Li ZY, Yi LB, Zy L, Lb Y et al. Arthrobacter halodurans sp. nov., a new halotolerant bacterium isolated from sea water. Antonie Van Leeuwenhoek 2009;96:63–70 [CrossRef][PubMed]
-
34. Hu QW, Chu X, Xiao M, Li CT, Yan ZF, Qw H, Ct L et al. Arthrobacter deserti sp. nov., isolated from a desert soil sample. Int J Syst Evol Microbiol 2016;66:2035–2040 [CrossRef][PubMed]
-
35. Uchida K, Kudo T, Suzuki KI, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999;45:49–56 [CrossRef][PubMed]
-
36. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
-
37. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47:698–708 [CrossRef]
-
38. Busse HJ, Kämpfer P, Denner EB. Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 1999;23:242–251 [CrossRef][PubMed]
-
39. Taibi G, Schiavo MR, Gueli MC, Rindina PC, Muratore R et al. Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J Chromatogr B Biomed Sci Appl 2000;745:431–437 [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002167dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002167dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....