- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 10
- Article

f Altererythrobacter deserti sp. nov., isolated from desert soil
- Authors: Zheng-Fei Yan1 , Pei Lin1 , Kyung-Hwa Won1 , Jung-Eun Yang1 , Chang-Tian Li2 , MooChang Kook3 , Tae-Hoo Yi1
-
- VIEW AFFILIATIONS
-
1 1Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University Global Campus, 1732 Deokyoungdae-ro, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea 2 2Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China 3 3Department of Marine Biotechnology, Anyang University, Incheon 23038, Republic of Korea
- *Correspondence: Tae-Hoo Yi [email protected]
- First Published Online: 07 September 2017, International Journal of Systematic and Evolutionary Microbiology 67: 3806-3811, doi: 10.1099/ijsem.0.002197
- Subject: New taxa - Proteobacteria
- Received:
- Accepted:
- Cover date:




Altererythrobacter deserti sp. nov., isolated from desert soil, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/10/3806_ijsem002197-1.gif
-
A Gram-stain-negative, aerobic, short rod-shaped, non-motile bacterium (THG-S3T), was isolated from desert soil. Growth occurred at 15–35 °C (optimum 28 °C), at pH 5–10 (optimum 7) and at 0–4 % NaCl (optimum 1 %). Based on 16S rRNA gene sequence analysis, the nearest phylogenetic neighbours of strain THG-S3T were identified as Altererythrobacter rigui KCTC 42620T (99.0 %), Altererythrobacter dongtanensis KCTC 22672T (97.1 %), Altererythrobacter xinjiangensis CCTCC AB 207166T (96.9 %), Altererythrobacter troitsensis KCTC 12303T (96.9 %). Levels of relatedness among strain THG-S3T and other Altererythrobacter species were lower than 96.0 %. DNA–DNA hybridization values between strain THG-S3T and A. rigui KCTC 42620T, A. dongtanensis KCTC 22672T, A. xinjiangensis CCTCC AB 207166T and A. troitsensis KCTC 12303T were 59.7 % (42.8 %, reciprocal analysis), 45.1 % (36.3 %), 34.7 % (25.1 %) and 15.1 % (12.3 %), respectively. The DNA G+C content of strain THG-S3T was 69 mol%. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and three unidentified lipids The quinone was ubiquinone-10. The major fatty acids were C16 : 0, C17 : 1 ω6c, C18 : 1 ω7c and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics and DNA–DNA hybridization data, strain THG-S3T represents a novel species of the genus Altererythrobacter , for which the name Altererythrobacter deserti sp. nov. is proposed. The type strain is THG-S3T (=KACC 19190T=CGMCC 1.15959T).
-
The NCBI GenBank accession number for the 16S rRNA gene sequence of strain THG-S3T is KY287245.
-
One supplementary table and three supplementary figures are available with the online Supplementary Material.
- Keyword(s): Altererythrobacter deserti, desert soil
© 2017 IUMS | Published by the Microbiology Society
-
1. Kwon KK, Woo JH, Yang SH, Kang JH, Kang SG et al. Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol 2007; 57: 2207– 2211 [CrossRef] [PubMed]
-
2. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42: D613– D616 [CrossRef] [PubMed]
-
3. Kumar NR, Nair S, Langer S, Busse HJ, Kämpfer P et al. Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 2008; 58: 839– 844 [Crossref]
-
4. Park SC, Baik KS, Choe HN, Lim CH, Kim HJ et al. Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61: 709– 715 [CrossRef] [PubMed]
-
5. Matsumoto M, Iwama D, Arakaki A, Tanaka A, Tanaka T et al. Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol 2011; 61: 2956– 2961 [CrossRef] [PubMed]
-
6. Lai Q, Yuan J, Shao Z. Altererythrobacter marinus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009; 59: 2973– 2976 [CrossRef] [PubMed]
-
7. Xue X, Zhang K, Cai F, Dai J, Wang Y et al. Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol 2012; 62: 28– 32 [CrossRef] [PubMed]
-
8. Nedashkovskaya OI, Cho SH, Joung Y, Joh K, Kim MN et al. Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2013; 63: 93– 97 [CrossRef] [PubMed]
-
9. Fan ZY, Xiao YP, Hui W, Tian GR, Lee JS et al. Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2011; 61: 2035– 2039 [CrossRef] [PubMed]
-
10. Kang JW, Kim MS, Lee JH, Baik KS, Seong CN et al. Altererythrobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016; 66: 2491– 2496 [Crossref]
-
11. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
-
12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
-
13. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
-
14. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
-
15. Kimura M. The Neutral Theory of Molecular Evolution UK: Cambridge University Press; 1984
-
16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
-
17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
-
18. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Biol 1969; 18: 1– 32 [CrossRef]
-
19. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
-
20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
-
21. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44: 992– 993 [PubMed]
-
22. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178: 703 [CrossRef] [PubMed]
-
23. Yan ZF, Lin P, Chu X, Kook M, Li CT et al. Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 2016; 198: 423– 427 [CrossRef] [PubMed]
-
24. Yan ZF, Trinh H, Moya G, Lin P, Li CT et al. Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the national flower of South Korea. Int J Syst Evol Microbiol 2016; 66: 4754– 4759 [CrossRef] [PubMed]
-
25. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
-
26. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
-
27. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A et al. Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 2008; 56: 625– 636 [CrossRef] [PubMed]
-
28. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
-
29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
-
30. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
-
31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
-
32. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
-
33. Hu HY, Lim BR, Goto N, Fujie K. Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 2001; 47: 17– 24 [PubMed] [Crossref]
-
34. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982; 5: 2359– 2367 [CrossRef]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002197dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002197dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....