- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 10
- Article

f Longispora urticae sp. nov., isolated from rhizosphere soil of Urtica urens L., and emended descriptions of the species Longispora albida and Longispora fulva
- Authors: Chenyu Piao1 , Liying Jin1 , Junwei Zhao1 , Chongxi Liu1 , Yue Zhao1 , Xiangjing Wang1 , Wensheng Xiang1,2
-
- VIEW AFFILIATIONS
-
1 1Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education Committee, Northeast Agricultural University, 59 Mucai Street, Xiangfang District, Harbin 150030, PR China 2 2State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
- *Correspondence: Xiangjing Wang [email protected], Wensheng Xiang [email protected]
- First Published Online: 18 September 2017, International Journal of Systematic and Evolutionary Microbiology 67: 4228-4234, doi: 10.1099/ijsem.0.002288
- Subject: New taxa - Actinobacteria
- Received:
- Accepted:
- Cover date:




Longispora urticae sp. nov., isolated from rhizosphere soil of Urtica urens L., and emended descriptions of the species Longispora albida and Longispora fulva, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/10/4228_ijsem002288-1.gif
-
Two Gram-stain-positive, aerobic actinomycete strains, designated NEAU-PCY-3T and NEAU-PCY-4, were isolated from rhizosphere soil of Urtica urens L. collected from Anshan, Liaoning Province, northeast PR China. The 16S rRNA gene sequence analysis showed that the two strains exhibited 99.9 % 16S rRNA gene sequence similarity with each other and that they were most closely to Longispora fulva DSM 45356T (98.7, 98.9 %) and Longispora albida JCM 11711T (97.1, 97.2 %). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the two strains were located in the same lineage and formed a cluster with the genus Longispora . Both strains were observed to contain MK-10(H4) and MK-10(H6) as the predominant menaquinones. The cell wall peptidoglycan was found to contain meso-diaminopimelic acid, d-glutamic acid, glycine and l-alanine. Whole-cell hydrolysates mainly contained galactose, ribose and xylose. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, several glycolipids and several unknown lipids. The major cellular fatty acids for strain NEAU-PCY-3T were iso-C16 : 0, iso-C17 : 0, anteiso-C17 : 0 and C18 : 1 ω5c. The DNA–DNA hybridization value between strains NEAU-PCY-3T and NEAU-PCY-4 was 83.6±0.4 %, and the values between the two strains and their closest phylogenetic relatives, belonging to the genus Longispora , were well below 70 %, supporting that they represented a distinct genomic species. An array of phenotypic characteristics also differentiated the strains from their closely related species, the only two validly published Longispora species. On the basis of the genetic, chemotaxonomic and phenotypic properties, strains NEAU-PCY-3T and NEAU-PCY-4 were classified as representatives of a novel species of the genus Longispora , for which the name Longispora urticae sp. nov. is proposed. The type strain is NEAU-PCY-3T (=DSM 105119T=CCTCC AA 2017017T).
-
The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of strains NEAU-PCY-3T and NEAU-PCY-4 are KY788225 and KY788227, respectively.
-
Two supplementary tables and five supplementary figures are available with the online Supplementary Material.
- Keyword(s): Longispora urticae sp. nov., polyphasic taxonomy, 16S rRNA gene
© 2017 IUMS | Published by the Microbiology Society
-
1. Matsumoto A, Takahashi Y, Shinose M, Seino A, Iwai Y et al. Longispora albida gen. nov., sp. nov., a novel genus of the family Micromonosporaceae. Int J Syst Evol Microbiol 2003; 53: 1553– 1559 [CrossRef] [PubMed]
-
2. Chiba H, Inokoshi J, Okamoto M, Asanuma S, Matsuzaki Ki et al. Actinohivin, a novel anti-HIV protein from an actinomycete that inhibits syncytium formation: isolation, characterization, and biological activities. Biochem Biophys Res Commun 2001; 282: 595– 601 [CrossRef] [PubMed]
-
3. Chiba H, Inokoshi J, Nakashima H, Ōmura S, Tanaka H. Actinohivin, a novel anti-human immunodeficiency virus protein from an actinomycete, inhibits viral entry to cells by binding high-mannose type sugar chains of gp120. Biochem Biophys Res Commun 2004; 316: 203– 210 [CrossRef]
-
4. Shiratori-Takano H, Yamada K, Beppu T, Ueda K. Longispora fulva sp. nov., isolated from a forest soil, and emended description of the genus Longispora. Int J Syst Evol Microbiol 2011; 61: 804– 809 [CrossRef] [PubMed]
-
5. Ueda K, Tagami Y, Kamihara Y, Shiratori H, Takano H et al. Isolation of bacteria whose growth is dependent on high levels of CO2 and implications of their potential diversity. Appl Environ Microbiol 2008; 74: 4535– 4538 [CrossRef] [PubMed]
-
6. Zhao K, Penttinen P, Chen Q, Guan T, Lindström K et al. The rhizospheres of traditional medicinal plants in Panxi, China, host a diverse selection of actinobacteria with antimicrobial properties. Appl Microbiol Biotechnol 2012; 94: 1321– 1335 [CrossRef] [PubMed]
-
7. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16: 313– 340 [CrossRef]
-
8. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57: 141– 145 [PubMed]
-
9. Waksman SA. The Actinobacteriavol. 2 Classification, identification and descriptions of genera and species Baltimore: Williams and Wilkins; 1961
-
10. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
-
11. Hayakawa M, Nonomura H. A new method for the intensive isolation of actinomycetes from soil. Actinomycetologica 1989; 3: 95– 104 [CrossRef]
-
12. Kelly KL. Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors published in US 1964
-
13. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
-
14. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974; 24: 54– 63 [CrossRef]
-
15. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43: 805– 812 [CrossRef]
-
16. Khianngam S, Akaracharanya A, Tanasupawat S, Lee KC, Lee JS. Paenibacillus thailandensis sp. nov. and Paenibacillus nanensis sp. nov., xylanase-producing bacteria isolated from soil. Int J Syst Evol Microbiol 2009; 59: 564– 568 [CrossRef] [PubMed]
-
17. Chern LL, Stackebrandt E, Lee SF, Lee FL, Chen JK et al. Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol 2004; 54: 1387– 1391 [CrossRef] [PubMed]
-
18. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013; 103: 399– 408 [CrossRef] [PubMed]
-
19. Xie QY, Lin HP, Li L, Brown R, Goodfellow M et al. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2012; 102: 1– 7 [CrossRef] [PubMed]
-
20. McKerrow J, Vagg S, Mckinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30: 178– 182 [CrossRef] [PubMed]
-
21. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy (Special Publication no. 6) Arlington: Society for Industrial Microbiology; 1980; pp. 227– 291
-
22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
-
23. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical methods in bacterial systematics London: Academic Press; 1985; pp. 267– 284
-
24. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
-
25. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105: 307– 315 [CrossRef] [PubMed]
-
26. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61: 1165– 1169 [CrossRef] [PubMed]
-
27. Lee YK, Kim HW, Liu CL, Lee HK. A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods 2003; 52: 245– 250 [CrossRef] [PubMed]
-
28. Loqman S, Barka EA, Clément C, Ouhdouch Y. Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol 2009; 25: 81– 91 [CrossRef]
-
29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
-
30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
-
31. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
-
32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
-
33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
-
34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
-
35. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
-
36. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12B: 195– 206 [Crossref]
-
37. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
-
38. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
-
39. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002288dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002288dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....