- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 68, Issue 1
- Article

f Melaminivora jejuensis sp. nov., isolated from Swinery waste
- Authors: Ji-Young Kim1 , So-Hyun Park2 , Dong-Heon Lee1 , Gwanpil Song3 , Young-Ju Kim4
-
- VIEW AFFILIATIONS
-
1 1Research institute for basic science, Jeju National University, Jeju 63241, Republic of Korea 2 2Department of Aquatic Life Medicine, College of Ocean Science, Jeju 63241, Republic of Korea 3 3Jeju Biological Resource Co., Ltd, CTC Business Incubator, Jeju 63242, Republic of Korea 4 4Marine and Environmental Research Institute of Jeju National University, Jeju, 63241, Republic of Korea
- *Correspondence: Ji-Young Kim [email protected], Young-Ju Kim [email protected]
- First Published Online: 07 November 2017, International Journal of Systematic and Evolutionary Microbiology 68: 9-13, doi: 10.1099/ijsem.0.002294
- Subject: New Taxa - Proteobacteria
- Received:
- Accepted:
- Cover date:




Melaminivora jejuensis sp. nov., isolated from Swinery waste, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/68/1/9_ijsem002294-1.gif
-
A sulfur-oxidizing bacterium, designated strain KBB12T, was isolated from swinery waste collected in Jeju, Republic of Korea. The cells were Gram-stain-negative, flagellated and rod-shaped. Growth occurred at 15–45 °C (optimum, 30–37 °C), at pH 6–9 (optimum, pH 7.0) and in the presence of 0–1 % (w/v) NaCl. The major cellular fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c, C16 : 0 and C18 : 1ω7c. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipid and an unidentified lipid. The major isoprenoid quinone was ubiquinone-8 (Q-8) and the DNA G+C content of the genomic DNA was 69.6 mol%. Phylogenetic analyses, based on 16S rRNA gene sequences, showed that the novel isolate belongs to the genus Melaminivora and was most closely related to Melaminivora alkalimesophila CY1T (97.2 % similarity). The DNA–DNA relatedness values between strain KBB12T and M. alkalimesophila DSM26005T was 43.4 2.7 %. On the basis of phylogenetic and phenotypic evidence, it is proposed that strain KBB12T represents a novel species of the genus Melaminivora , for which the name Melaminivora jejuensis sp. nov. is proposed. The type strain is KBB12T (=KCTC 32230T=JCM 18740T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain KBB12T is JX997988. The GenBank accession number for the soxB gene amino acid sequence of strain KBB12T is KC295221.
-
Three supplementary figures are available with the online version of this article.
- Keyword(s): family Comamonadaceae, sulfur oxidizing bacterium, Melaminivora
© 2018 IUMS | Published by the Microbiology Society
-
1. Wang H, Li J, Hu A, Qin D, Xu H et al. Melaminivora alkalimesophila gen. nov., sp. nov., a melamine-degrading betaproteobacterium isolated from a melamine-producing factory. Int J Syst Evol Microbiol 2014; 64: 1938– 1944 [CrossRef] [PubMed]
-
2. Liao B, Ji G, Cheng L. Profling of microbial communities in a bioreactor for treating hydrocarbon-sulfde-containing wastewater. J Environ Sci 2008; 20: 897– 899 [CrossRef]
-
3. Luo JF, Lin WT, Guo Y. Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Appl Microbiol Biotechnol 2011; 90: 769– 778 [CrossRef] [PubMed]
-
4. Petri R, Podgorsek L, Imhoff JF. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol Lett 2001; 197: 171– 178 [CrossRef] [PubMed]
-
5. Sorokin DY, van den Bosch PL, Abbas B, Janssen AJ, Muyzer G. Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Appl Microbiol Biotechnol 2008; 80: 965– 975 [CrossRef] [PubMed]
-
6. Anandham R, Indiragandhi P, Madhaiyan M, Ryu KY, Jee HJ et al. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Res Microbiol 2008; 159: 579– 589 [CrossRef] [PubMed]
-
7. Meyer B, Imhoff JF, Kuever J. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system. Environ Microbiol 2007; 9: 2957– 2977 [CrossRef] [PubMed]
-
8. Bushnell LD, Haas HF. The utilization of certain hydrocarbons by microorganisms. J Bacteriol 1941; 41: 653– 673 [PubMed]
-
9. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
-
10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
-
11. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
-
12. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
-
13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
-
14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
-
15. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
-
16. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
-
17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
-
18. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
-
19. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
-
20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.; 1990
-
21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
-
22. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
-
23. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
-
24. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002294dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002294dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....