- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 11
- Article

f Kordia zosterae sp. nov., isolated from the seaweed, Zostera marina
- Authors: Dae In Kim1,2 , Ji Hee Lee3 , Mi Sun Kim4 , Chi Nam Seong1
-
- VIEW AFFILIATIONS
-
1 1Department of Biology, College of Life science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2 2Environmentally Friendly Agriculture Center, Sunchon National University, Suncheon 57922, Republic of Korea 3 3Aquaculture Industry Research Division, South Sea Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Yeosu 59780, Republic of Korea 4 4Agricultural Sciences Institute, Sunchon National University, Suncheon 57922, Republic of Korea
- *Correspondence: Chi Nam Seong [email protected]
- First Published Online: 06 October 2017, International Journal of Systematic and Evolutionary Microbiology 67: 4790-4795, doi: 10.1099/ijsem.0.002379
- Subject: New taxa - Bacteroidetes
- Received:
- Accepted:
- Cover date:




Kordia zosterae sp. nov., isolated from the seaweed, Zostera marina, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/11/4790_ijsem002379-1.gif
-
A Gram-stain-negative, gliding and rod shaped bacterium, designated strain ZO2-23T was isolated from a seaweed sample collected from the West Sea, Republic of Korea. Cells are catalase-negative and oxidase-positive. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain ZO2-23T forms an independent lineage within the genus Kordia . Strain ZO2-23T was related to Kordia ulvae SC2T (98.0 %, 16S rRNA gene sequence similarity) and K. antarctica IMCC3317T (97.9 %). The major fatty acids of strain ZO2-23T were iso-C15 : 0, iso-C17 : 0 3-OH, summed feature 3 and iso-C15 : 0 3-OH. The only isoprenoid quinone of the isolate was menaquinone-6. The DNA G+C content of strain ZO2-23T was 31.7 mol%. Phenotypic characteristics distinguished strain ZO2-23T from the related species of the genus Kordia . On the basis of the evidences presented in this study, novel species, Kordia zosterae sp. nov., is proposed for strain ZO2-23T (=KCTC 52268T=JCM 31799T).
-
The GenBank accession number for 16S rRNA sequence of strain ZO2-23T (KCTC 52268T=JCM 31799T) is KX078451.
-
Four supplementary figures are available with the online Supplementary Material.
- Keyword(s): Flavobacteriaceae, Zostera marina, Kordia zosterae sp. nov.
© 2017 IUMS | Published by the Microbiology Society
-
1. Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol.4 New York: Springer; 2011; pp. 106– 111
-
2. Choi A, Oh HM, Yang SJ, Cho JC. Kordia periserrulae sp. nov., isolated from a marine polychaete Periserrula leucophryna, and emended description of the genus Kordia. Int J Syst Evol Microbiol 2011; 61: 864– 869 [CrossRef] [PubMed]
-
3. Sohn JH, Lee JH, Yi H, Chun J, Bae KS et al. Kordia algicida gen. nov., sp. nov., an algicidal bacterium isolated from red tide. Int J Syst Evol Microbiol 2004; 54: 675– 680 [CrossRef] [PubMed]
-
4. Hameed A, Shahina M, Lin SY, Cho JC, Lai WA et al. Kordia aquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia. Int J Syst Evol Microbiol 2013; 63: 4790– 4796 [CrossRef] [PubMed]
-
5. Park S, Jung YT, Yoon JH. Kordia jejudonensis sp. nov., isolated from the junction between the ocean and a freshwater spring, and emended description of the genus Kordia. Int J Syst Evol Microbiol 2014; 64: 657– 662 [CrossRef] [PubMed]
-
6. Baek K, Choi A, Kang I, Lee K, Cho JC. Kordia antarctica sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol 2013; 63: 3617– 3622 [CrossRef] [PubMed]
-
7. Du J, Liu Y, Lai Q, Dong C, Xie Y et al. Kordia zhangzhouensis sp. nov., isolated from the surface freshwater of the Jiulong River in China. Int J Syst Evol Micribiol 2015; 65: 3379– 3383 [Crossref]
-
8. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45: 240– 245 [CrossRef] [PubMed]
-
9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
-
10. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
-
11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999; 41: 95– 98
-
12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
-
13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
-
14. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Department of Genetics, University of Washington, Seattle, USA 1993
-
15. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35: 367– 375 [CrossRef] [PubMed]
-
16. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969; pp. 21– 132 [Crossref]
-
17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
-
18. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962; 5: 109– 118 [CrossRef] [PubMed]
-
19. Lee JS, Lee KC, Pyun YR, Bae KS. Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Microbiol 2003; 53: 1277– 1280 [CrossRef] [PubMed]
-
20. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [Crossref]
-
21. Zobell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 1941; 4: 42– 75
-
22. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61: 3756– 3758 [PubMed]
-
23. Yamaguchi S, Yokoe M. A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 2000; 66: 3337– 3343 [CrossRef] [PubMed]
-
24. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
-
25. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology Press; 2007; pp. 335– 386
-
26. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993; [Crossref]
-
27. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
-
28. Klassen JL, Foght JM. Differences in carotenoid composition among hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 2008; 74: 2016– 2022 [CrossRef] [PubMed]
-
29. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J ClinPathol 1966; 45: 493– 496
-
30. CLSI Performance Standards for Antimicrobial Susceptibility Testing. 19th Informational Supplement CLSI document M100-S19 (ISBN 1–56238–690–5) Wayne, PA: Clinical and Laboratory Standards Institute; 2009
-
31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
-
32. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19: 161– 207 [Crossref]
-
33. Schenkel E, Berlaimont V, Dubois J, Helson-Cambier M, Hanocq M. Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 1995; 668: 189– 197 [CrossRef] [PubMed]
-
34. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons Ltd; 1994; pp. 265– 309
-
35. Qi F, Huang Z, Lai Q, Li D, Shao Z. Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp. Int J Syst Evol Microbiol 2016; 66: 2623– 2628 [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002379dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002379dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....