- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 68, Issue 1
- Article

f Paenibacillus shunpengii sp. nov., isolated from farmland soil
- Authors: You-Jian Yang1,† , Yan-Ting Zhang1,† , Guo-Qiang Chen2,† , Dan Cheng3 , Ji-Guo Qiu1 , Qin He1 , Jian He1,3
-
- VIEW AFFILIATIONS
-
1 1Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China 2 2Suzhou Entry-Exit Inspection and Quarantine Bureau, Suzhou, Jiangsu 215021, PR China 3 3Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- *Correspondence: Qin He [email protected], Jian He [email protected]
- First Published Online: 14 November 2017, International Journal of Systematic and Evolutionary Microbiology 68: 211-216, doi: 10.1099/ijsem.0.002484
- Subject: New Taxa - Firmicutes and Related Organisms
- Received:
- Accepted:
- Cover date:




Paenibacillus shunpengii sp. nov., isolated from farmland soil, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/68/1/211_ijsem002484-1.gif
-
A bacterial strain designated YYJ7-1T was isolated from farmland soil in China and characterized using a polyphasic taxonomic approach. Cells of strain YYJ7-1T were Gram-staining-positive, aerobic or facultatively anaerobic, rod-shaped, motile and endospore-forming. Growth occurred at 18–42 °C (optimum at 35 °C), at pH 6.0–8.0 (optimum at pH 7.5) and with 0.0–4.0 % NaCl (optimum with 0.5 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Paenibacillus and showed high levels of sequence similarity with respect to Paenibacillus provencensis 4401170T (98.6 %) and Paenibacillus urinalis 5402403T (98.4 %), while lower 16S rRNA gene sequence similarities were observed with all other type strains (97.0 %). However, strain YYJ7-1T showed low DNA–DNA relatedness with P. provencensis 4401170T 48.7±4.5 % (43.6±7.1 % in a reciprocal experiment), and P. urinalis 5402403T 38.9±5.7 % (35.6±6.8 %). The major cellular fatty acids (>10.0 %) of strain YYJ7-1T were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The polar lipid profile consisted of phospholipids, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The major isoprenoid quinone was MK-7. The DNA G+C content was 39.4 mol%. Based on these results, it is concluded that strain YYJ7-1T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus shunpengii sp. nov. is proposed, with YYJ7-1T (=ACCC 19965T=KCTC 33849T) as the type strain.
-
†
These authors contributed equally to this work.
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain YYJ7-1T is KX900571.
-
Five supplementary figures are available with the online version of this article.
- Keyword(s): Paenibacillus shunpengii sp. nov., farmland soil
© 2018 IUMS | Published by the Microbiology Society
-
1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 1993; 64: 253– 260 [PubMed] [Crossref]
-
2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47: 289– 298 [CrossRef] [PubMed]
-
3. Huang XF, Wang FZ, Zhang W, Li J, Ling J et al. Paenibacillus abyssi sp. nov., isolated from an abyssal sediment sample from the Indian Ocean. Antonie van Leeuwenhoek 2014; 106: 1089– 1095 [CrossRef] [PubMed]
-
4. Dsouza M, Taylor MW, Ryan J, MacKenzie A, Lagutin K et al. Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. Int J Syst Evol Microbiol 2014; 64: 1406– 1411 [CrossRef] [PubMed]
-
5. Zhu J, Wang W, Li SH, Song SQ, Xie YQ et al. Paenibacillus wulumuqiensis sp. nov. and Paenibacillus dauci sp. nov., two novel species of the genus Paenibacillus. Arch Microbiol 2015; 197: 489– 495 [CrossRef] [PubMed]
-
6. Roux V, Fenner L, Raoult D. Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 2008; 58: 682– 687 [CrossRef] [PubMed]
-
7. Guo GN, Zhou X, Chen ZL, Yang ZW, Li XD et al. Paenibacillus marchantiophytorum sp. nov., isolated from the liverwort Herbertus sendtneri. Int J Syst Evol Microbiol 2016; 66: 755– 761 [CrossRef] [PubMed]
-
8. Lim JM, Jeon CO, Park DJ, Xu LH, Jiang CL et al. Paenibacillus xinjiangensis sp. nov., isolated from Xinjiang province in China. Int J Syst Evol Microbiol 2006; 56: 2579– 2582 [CrossRef] [PubMed]
-
9. Zhou Y, Gao S, Wei DQ, Yang LL, Huang X et al. Paenibacillus thermophilus sp. nov., a novel bacterium isolated from a sediment of hot spring in Fujian province, China. Antonie van Leeuwenhoek 2012; 102: 601– 609 [CrossRef] [PubMed]
-
10. Zhang J, Ma XT, Gao JS, Zhang CW, Zhao JJ et al. Paenibacillus oryzisoli sp. nov., isolated from the rhizosphere of rice. Antonie Van Leeuwenhoek 2017; 110: 69– 75 [CrossRef] [PubMed]
-
11. Wang L, Baek SH, Cui Y, Lee HG, Lee ST. Paenibacillus sediminis sp. nov., a xylanolytic bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62: 1284– 1288 [CrossRef] [PubMed]
-
12. De Vos P, Ludwig WF, Schleifer KH, Whitman I. Family IV. Paenibacillaceae fam. nov. In Bergey's Manual of Systematic Bacteriologyvol. 3 2011; pp. 269
-
13. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor, NY: Cold Springer Harbor Laboratory; 2001
-
14. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998; 48: 187– 194 [CrossRef] [PubMed]
-
15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
-
16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
-
17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
-
18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
-
19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
-
20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
-
21. da Mota FF, Gomes EA, Paiva E, Rosado AS, Seldin L. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 2004; 39: 34– 40 [CrossRef] [PubMed]
-
22. Adékambi T, Shinnick TM, Raoult D, Drancourt M. Complete rpoB gene sequencing as a suitable supplement to DNA–DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 2008; 58: 1807– 1814 [CrossRef] [PubMed]
-
23. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77: 194 [CrossRef] [PubMed]
-
24. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
-
25. Breznak JA, Costilow RN. Physicochemical factors in growth. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G. (editors) Methods for General and Molecular Bacteriology, 2nd ed. Washington, DC: American Society of Microbiology Press; 2007; pp. 309– 329
-
26. McCarthy AJ, Cross T. A taxonomic study of Thermomonospora and other monosporic actinomycetes. Microbiology 1984; 130: 5– 25 [CrossRef]
-
27. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
-
28. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
-
29. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
-
30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
-
31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
-
32. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002484dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002484dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....