1887

Abstract

An obligately aerobic extremely halophilic alkalithermophilic archaeon, strain JW/NM-HA 15, was isolated from the sediments of Wadi An Natrun in Egypt. Phylogenetic analysis based on 16S rRNA and gene sequences indicated that it belongs to the family of the order . The closest relatives were IHC-005 and N-1311 (95.3 and 94.5 % 16S rRNA gene sequence similarity, respectively). Genome relatedness between strain JW/NM-HA 15 and its neighbours was evaluated using average nucleotide identity, digital DNA–DNA hybridization and average amino acid identity with the values of 75.7–85.0, 18.1–20.0, and 70.2–71.0%, respectively. Cells were obligately aerobic, rod-shaped, non-motile, Gram-stain-negative and chemo-organotrophic. The strain grew in the presence of 2.57 M to saturating Na (optimum 3.25–4.60 M Na), at pH 7.5–10.5 (optimum pH 9.0–9.5), and at 30–56 °C (optimum 52 °C). The major polar lipids consisted of phosphatidylglycerol, methylated phosphatidylglycerolphosphate and two phospholipids. The complete genome size of strain JW/NM-HA 15 is approximately 3.93 Mb, with a DNA G+C content of 64.1 mol%. On the basis of phylogenetic features, genomic relatedness, phenotypic and chemotaxonomic data, strain JW/NM-HA 15 was thus considered to represent a novel species within the genus , for which the name sp. nov. is proposed. The type strain is JW/NM-HA 15 (=ATCC BAA-2088 =DSM 23470).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002524
2018-02-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/2/498.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002524&mimeType=html&fmt=ahah

References

  1. Mesbah NM, Abou-El-Ela SH, Wiegel J. Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 2007; 54:598–617 [View Article][PubMed]
    [Google Scholar]
  2. Oren A. Two centuries of microbiological research in the Wadi Natrun, Egypt: a model system for the study of the ecology, physiology, and taxonomy of haloalkaliphilic microorganisms. In Seckbach J, Oren A, Stan-Lotter H. (editors) Polyextremophiles - Organisms Living Under Multiple Stress Netherlands: Springer; 2012
    [Google Scholar]
  3. Bowers KJ, Mesbah NM, Wiegel J. Biodiversity of poly-extremophilic Bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life?. Saline Systems 2009; 5:9 [View Article][PubMed]
    [Google Scholar]
  4. Bowers KJ, Wiegel J. Temperature and pH optima of extremely halophilic archaea: a mini-review. Extremophiles 2011; 15:119–128 [View Article][PubMed]
    [Google Scholar]
  5. Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J. Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 2007; 57:2507–2512 [View Article][PubMed]
    [Google Scholar]
  6. Mesbah NM, Wiegel J. Natronovirga wadinatrunensis gen. nov., sp. nov. and Natranaerobius trueperi sp. nov., halophilic, alkalithermophilic micro-organisms from soda lakes of the Wadi An Natrun, Egypt. Int J Syst Evol Microbiol 2009; 59:2042–2048 [View Article][PubMed]
    [Google Scholar]
  7. Fukushima T, Usami R, Kamekura M. A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution. Saline Systems 2007; 3:2 [View Article][PubMed]
    [Google Scholar]
  8. Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol 2015; 65:1050–1069 [View Article][PubMed]
    [Google Scholar]
  9. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Natrialbaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article][PubMed]
    [Google Scholar]
  10. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  11. Wiegel J. Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 1998; 2:257–267 [View Article][PubMed]
    [Google Scholar]
  12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  13. Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ et al. The RDP (Ribosomal database project). Nucleic Acids Res 1997; 25:109–110 [View Article][PubMed]
    [Google Scholar]
  14. Myers EW, Miller W. Optimal alignments in linear space. Comput Appl Biosci 1988; 4:11–17 [View Article][PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Itoh T, Yamaguchi T, Zhou P, Takashina T. Natronolimnobius baerhuensis gen. nov., sp. nov. and Natronolimnobius innermongolicus sp. nov., novel haloalkaliphilic archaea isolated from soda lakes in Inner Mongolia, China. Extremophiles 2005; 9:111–116 [View Article][PubMed]
    [Google Scholar]
  17. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  18. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  19. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  20. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  22. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  25. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism vol. 3 New York: Academic Press; 1969 pp. 21–132 [Crossref]
    [Google Scholar]
  26. Kelley DR, Schatz MC, Salzberg SL. Quake: quality-aware detection and correction of sequencing errors. Genome Biol 2010; 11:R116 [View Article][PubMed]
    [Google Scholar]
  27. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWAMEM; 2013 Preprint https://arxiv.org/abs/1303.3997
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  29. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  33. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e7312 [View Article][PubMed]
    [Google Scholar]
  34. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  35. Mesbah NM, Isolation WJ. cultivation and characterization of alkalithermophiles. In Rainey FA, Oren A. (editors) Methods in Microbiology volume 35: Extremophilic Microorganisms London: Elsevier; 2006 pp. 451–468 [Crossref]
    [Google Scholar]
  36. Zhao B, Yan Y, Chen S. How could haloalkaliphilic microorganisms contribute to biotechnology?. Can J Microbiol 2014; 60:717–727 [View Article][PubMed]
    [Google Scholar]
  37. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. et al. (editors) Manual of Methods for General Bacteriology Washington: American Society for Microbiology; 1981
    [Google Scholar]
  38. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article][PubMed]
    [Google Scholar]
  39. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  40. Cowan S, Steel K. In Barrow GI, Feltham RKA. (editors) Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge, London: Cambridge University Press; 1993
    [Google Scholar]
  41. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  42. Tindall BJ. A Comparative study of the lipid composition of Halobacterium saccharovorum from Various Sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  43. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  44. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  45. Pearson A, Huang Z, Ingalls AE, Romanek CS, Wiegel J et al. Nonmarine crenarchaeol in nevada hot springs. Appl Environ Microbiol 2004; 70:5229–5237 [View Article][PubMed]
    [Google Scholar]
  46. Zhang CL, Pearson A, Li YL, Mills G, Wiegel J. Thermophilic temperature optimum for crenarchaeol synthesis and its implication for archaeal evolution. Appl Environ Microbiol 2006; 72:4419–4422 [View Article][PubMed]
    [Google Scholar]
  47. Schouten S, Huguet C, Hopmans EC, Kienhuis MV, Damsté JS. Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal Chem 2007; 79:2940–2944 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002524
Loading
/content/journal/ijsem/10.1099/ijsem.0.002524
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error