- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 68, Issue 4
- Article

f Phyllobacterium salinisoli sp. nov., isolated from a Lotus lancerottensis root nodule in saline soil from Lanzarote
- Authors: Milagros León-Barrios1 , Martha Helena Ramírez-Bahena2 , José M. Igual2,3 , Álvaro Peix2,3 , Encarna Velázquez3,4
-
- VIEW AFFILIATIONS
-
1 1Departamento de Bioquímica, Microbiología, Biología Celular y Genética. Universidad de La Laguna, Tenerife, Spain 2 2Instituto de Recursos Naturales y Agrobiología de Salamanca. Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain 3 3Unidad Asociada Universidad de Salamanca-CSIC “Interacciones Planta-Microorganismo”, Salamanca, Spain 4 4Departamento de Microbiología y Genética and Centro Hispanoluso de Investigaciones Agrarias (CIALE). Universidad de Salamanca, Salamanca, Spain
- *Correspondence: Milagros León-Barrios [email protected]
- First Published Online: 13 February 2018, International Journal of Systematic and Evolutionary Microbiology 68: 1085-1089, doi: 10.1099/ijsem.0.002628
- Subject: New Taxa - Proteobacteria
- Received:
- Accepted:
- Cover date:




Phyllobacterium salinisoli sp. nov., isolated from a Lotus lancerottensis root nodule in saline soil from Lanzarote, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/68/4/1085_ijsem002628-1.gif
-
A Gram-negative rod, designated strain LLAN61T, was isolated from a root nodule of Lotus lancerottensis growing in a saline soil sample from Lanzarote (Canary Islands). The strain grew optimally at 0.5 % (w/v) NaCl and tolerated up to 3.5 %. The 16S rRNA gene sequence analysis showed that strain LLAN61T belonged to genus Phyllobacterium and that Phyllobacterium leguminum ORS 1419T and Phyllobacterium myrsinacearum IAM 13584T are the closest related species with 97.93 and 97.86% similarity values, respectively. In the atpD phylogeny, P. leguminum ORS 1419T and P. myrsinacearum ATCC 43591T, sharing similarities of 87.6 and 85.8% respectively, were also the closest species to strain LLAN61T. DNA–DNA hybridization showed an average value of 21 % between strain LLAN61T and P. leguminum LMG 22833T, and 6 % with P. myrsinacearum ATCC 43590T. The predominant fatty acids were C19 : 0 cyclo ω8c and C18 : 1ω6c/C18 : 1ω7c (summed feature 8). The DNA G+C content was 58.0 mol%. Strain LLAN61T differed from its closest relatives in some culture conditions and in assimilation of several carbon sources. Based upon the results of phylogeny, DNA–DNA hybridization, phenotypic tests and fatty acid analysis, this strain should be classified as a novel species of Phyllobacterium for which the name Phyllobacterium salinisoli sp. nov. is proposed (type strain LLAN61T=LMG 30173T = CECT 9417T).
-
The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA and the atpD gene sequences of strain LLAN61T are LT614649 and LT614661, respectively.
-
One supplementary figure is available with the online version of this article.
- Keyword(s): root-nodule bacteria, Lanzarote, Canary Islands, Phyllobacterium, Lotus lancerottensis
© 2018 IUMS | Published by the Microbiology Society
-
1. Mergaert J, Swings J. Phyllobacterium. Bergey's Manual of Systematics of Archaea and Bacteria 2015
-
2. Jurado V, Laiz L, Gonzalez JM, Hernandez-Marine M, Valens M et al. Phyllobacterium catacumbae sp. nov., a member of the order 'Rhizobiales' isolated from Roman catacombs. Int J Syst Evol Microbiol 2005; 55: 1487– 1490 [CrossRef] [PubMed]
-
3. Mergaert J, Cnockaert MC, Swings J. Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend. Int J Syst Evol Microbiol 2002; 52: 1821– 1823 [CrossRef] [PubMed]
-
4. Mantelin S, Saux MF, Zakhia F, Béna G, Bonneau S et al. Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol 2006; 56: 827– 839 [CrossRef] [PubMed]
-
5. Valverde A, Velázquez E, Fernández-Santos F, Vizcaíno N, Rivas R et al. Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol 2005; 55: 1985– 1989 [CrossRef] [PubMed]
-
6. Flores-Félix JD, Carro L, Velázquez E, Valverde Á, Cerda-Castillo E et al. Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 2013; 63: 821– 826 [CrossRef] [PubMed]
-
7. Sánchez M, Ramírez-Bahena MH, Peix A, Lorite MJ, Sanjuán J et al. Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. Int J Syst Evol Microbiol 2014; 64: 781– 786 [CrossRef] [PubMed]
-
8. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH et al. Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol 2015; 65: 399– 406 [CrossRef] [PubMed]
-
9. León-Barrios M, Pérez-Yépez J, Dorta P, Garrido A, Jiménez C. Alkalinity of Lanzarote soils is a factor shaping rhizobial populations with Sinorhizobium meliloti being the predominant microsymbiont of Lotus lancerottensis. Syst Appl Microbiol 2017; 40: 171– 178 [CrossRef] [PubMed]
-
10. Vincent JM. The cultivation, isolation and maintenance of rhizobia. In Vincent JM. (editor) A Manual for the Practical Study of Root-Nodule Oxford: Blackwell Scientific Publications; 1970; pp. 1– 13
-
11. Sotelo M, Irisarri P, Lorite MJ, Casaretto E, Rebuffo M et al. Diversity of rhizobia nodulating Lotus corniculatus grown in northern and southern regions of Uruguay. Applied Soil Ecology 2011; 49: 197– 207 [CrossRef]
-
12. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001; 147: 981– 993 [CrossRef] [PubMed]
-
13. Rivas R, García-Fraile P, Peix A, Mateos PF, Martínez-Molina E et al. Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 2007; 57: 1331– 1335 [CrossRef] [PubMed]
-
14. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JP. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 2001; 51: 2037– 2048 [CrossRef] [PubMed]
-
15. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403– 410 [CrossRef] [PubMed]
-
16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
-
17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
-
18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [CrossRef] [PubMed]
-
19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
-
20. Rogers JS, Swofford DL. A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 1998; 47: 77– 89 [CrossRef] [PubMed]
-
21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
-
22. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
-
23. Willems A, Doignon-Bourcier F, Goris J, Coopman R, de Lajudie P et al. DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 2001; 51: 1315– 1322 [CrossRef] [PubMed]
-
24. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
-
25. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45: 240– 245 [CrossRef] [PubMed]
-
26. Mandel M, Mamur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12B: 195– 206 [Crossref]
-
27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002628dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002628dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....