1887

Abstract

A Gram-stain-negative, strictly aerobic bacterium, designated StC1, was isolated from a marine alga, Stylonema cornu-cervi, in the Republic of Korea. Cells were oxidase- and catalase-positive rods that were motile by a single lateral flagellum. Growth of strain StC1 was observed at 30–45 °C(optimum, 37 °C), pH 6.0–11.0 (pH 7.0) and in the presence of 1.0–8.0 % (w/v) NaCl (2 %). Strain StC1 contained summed feature 8 (comprising C18 : 1ω7c/C18 : 1  ω6c) and 11-methyl-C18 : 1ω7c as the major fatty acids. Sulfoquinovosyl diacylglycerol, phosphatidylethanolamine and phosphatidylglycerol and ubiquinone-10 were identified as the major polar lipids and the sole isoprenoid quinone, respectively. The G+C content of the genomic DNA was 64.7 mol%. Strain StC1 was most closely related to Oricola cellulosilytica CC-AMH-O, Nitratireductor basaltis J3, Aquamicrobium ahrensii 905/1 and Mesorhizobium tamadayense Ala-3 with 97.3 , 96.9 , 96.8  and 96.6 % 16S rRNA gene sequence similarities, respectively, but it formed a distinct phylogenic lineage within the family Phyllobacteriaceae . On the basis of phenotypic, chemotaxonomic and molecular properties, strain StC1 represents a novel genus of the family Phyllobacteriaceae , for which the name Oceaniradius stylonematis gen. nov., sp. nov. is proposed. The type strain is StC1 (=KACC 19231=JCM 32050).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003413
2019-05-02
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/1967.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003413&mimeType=html&fmt=ahah

References

  1. Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 1998; 44:201–210 [View Article][PubMed]
    [Google Scholar]
  2. Roh SW, Kim KH, Nam YD, Chang HW, Kim MS et al. Aliihoeflea aestuarii gen. nov., sp. nov., a novel bacterium isolated from tidal flat sediment. J Microbiol 2008; 46:594–598 [View Article][PubMed]
    [Google Scholar]
  3. Kampfer P, Neef A, Salkinoja-Salonen MS, Buss HJ. Chelatobacter heintzii (Auling et al. 1993) is a later subjective synonym of Aminobacter aminovorans (Urakami et al. 1992). Int J Syst Evol Microbiol 2002; 52:835–839 [View Article][PubMed]
    [Google Scholar]
  4. Bambauer A, Rainey FA, Stackebrandt E, Winter J. Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. Arch Microbiol 1998; 169:293–302 [View Article][PubMed]
    [Google Scholar]
  5. Doronina NV, Kaparullina EN, Trotsenko YA, Nörtemann B, Bucheli-Witschel M et al. Chelativorans multitrophicus gen. nov., sp. nov. and Chelativorans oligotrophicus sp. nov., aerobic EDTA-degrading bacteria. Int J Syst Evol Microbiol 2010; 60:1044–1051 [View Article][PubMed]
    [Google Scholar]
  6. Li Y, Guo LM, Chang JP, Xie SJ, Piao CG et al. Corticibacterium populi gen. nov., sp. nov., a member of the family Phyllobacteriaceae, isolated from bark of Populus×euramericana . Int J Syst Evol Microbiol 2016; 66:2617–2622 [View Article][PubMed]
    [Google Scholar]
  7. Peix A, Rivas R, Trujillo ME, Vancanneyt M, Velázquez E et al. Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int J Syst Evol Microbiol 2005; 55:1163–1166 [View Article][PubMed]
    [Google Scholar]
  8. Park S, Lee JS, Lee KC, Yoon JH. Lentilitoribacter donghaensis gen. nov., sp. nov., a slowly-growing alphaproteobacterium isolated from coastal seawater. Antonie van Leeuwenhoek 2013; 103:457–464 [View Article][PubMed]
    [Google Scholar]
  9. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 1997; 47:895–898 [View Article]
    [Google Scholar]
  10. Labbé N, Parent S, Villemur R. Nitratireductor aquibiodomus gen. nov., sp. nov., a novel alpha-proteobacterium from the marine denitrification system of the Montreal Biodome (Canada). Int J Syst Evol Microbiol 2004; 54:269–273 [View Article][PubMed]
    [Google Scholar]
  11. Kim KH, Roh SW, Chang HW, Nam YD, Yoon JH et al. Nitratireductor basaltis sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol 2009; 59:135–138 [View Article][PubMed]
    [Google Scholar]
  12. Hameed A, Shahina M, Lai WA, Lin SY, Young LS et al. Oricola cellulosilytica gen. nov., sp. nov., a cellulose-degrading bacterium of the family Phyllobacteriaceae isolated from surface seashore water, and emended descriptions of Mesorhizobium loti and Phyllobacterium myrsinacearum . Antonie van Leeuwenhoek 2015; 107:759–771 [View Article][PubMed]
    [Google Scholar]
  13. Knösel D. Prüfung von bakterien auf Fähigkeit zur Sternbildung. Zentralbl Bakteriol Parasitenk Infecktionskr Hyg Abt 1962; 2:79–100
    [Google Scholar]
  14. Kämpfer P, Müller C, Mau M, Neef A, Auling G et al. Description of Pseudaminobacter gen nov. with two new species P. salicylatoxidans sp. nov. and P. defluvii sp. nov. Intl J Syst Bacteriol 1999; 149:887–897
    [Google Scholar]
  15. Chung EJ, Park JA, Pramanik P, Bibi F, Jeon CO et al. Hoeflea suaedae sp. nov., an endophytic bacterium isolated from the root of the halophyte Suaeda maritima . Int J Syst Evol Microbiol 2013; 63:2277–2281 [View Article][PubMed]
    [Google Scholar]
  16. Hyeon JW, Jeong SE, Baek K, Jeon CO. Roseitalea porphyridii gen. nov., sp. nov., isolated from a red alga, and reclassification of Hoeflea suaedae Chung et al. 2013 as Pseudohoeflea suaedae gen. nov., comb. nov. Int J Syst Evol Microbiol 2017; 67:362–368 [View Article][PubMed]
    [Google Scholar]
  17. Han L, Mo Y, Feng Q, Zhang R, Zhao X et al. Tianweitania sediminis gen. nov., sp. nov., a member of the family Phyllobacteriaceae, isolated from subsurface sediment core. Int J Syst Evol Microbiol 2016; 66:719–724 [View Article][PubMed]
    [Google Scholar]
  18. Liao H, Li Y, Lin X, Lai Q, Tian Y. Zhengella mangrovi gen. nov., sp. nov., a novel member of family Phyllobacteriaceae isolated from mangrove sediment. Int J Syst Evol Microbiol 2018; 68:2819–2825 [View Article][PubMed]
    [Google Scholar]
  19. Murphy CD, Moore RM, White RL. Peroxidases from marine microalgae. J Appl Phycol 2000; 12:507–513 [View Article]
    [Google Scholar]
  20. Kim JM, Le NT, Chung BS, Park JH, Bae JW et al. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene and o-, m- and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 2008; 74:7313–7320 [View Article][PubMed]
    [Google Scholar]
  21. Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 2002; 148:257–266 [View Article][PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  23. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3:e56 [View Article][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  25. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article][PubMed]
    [Google Scholar]
  26. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  27. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  29. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  31. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  32. Gomori G. Preparation of buffers for use in enzyme studies. Methods Enzymol 1955; 1:138–146
    [Google Scholar]
  33. Smibert R, Krieg N. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: Am Soc Microbiol; 1994 pp. 607–654
    [Google Scholar]
  34. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  36. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–208
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  38. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003413
Loading
/content/journal/ijsem/10.1099/ijsem.0.003413
Loading

Data & Media loading...

Supplements

Supplementary data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error